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ABSTRACT

We present several single-channel approaches to robust
speech recognition in reverberant environments based on
single-channel estimation of Csg. Our best method includes
this estimation in the feature vector as an additional param-
eter and also uses Csg to select the most suitable acoustic
model according to the reverberation level. We evaluate our
method on the REVERB challenge database and show that
our method outperforms the best baseline of the challenge, re-
ducing the word error rate by 5.7% (corresponding to 16.8%
relative word error rate reduction).

Index Terms— Reverberant speech recognition, Cs,
HLDA, acoustic model selection.

1. INTRODUCTION

Automatic speech recognition (ASR) is increasingly being
used as a tool for a wide range of applications in diverse
acoustic conditions (e.g. health care transcriptions, automatic
translation, voicemail to text, command automation, etc.). Of
particular importance is distant speech recognition, where the
user can interact with a device placed a short distance from
the user. Such systems allow for more natural and comfort-
able interaction between the technology and the Human (e.g.
hands free ASR systems in a car) which is crucial for increas-
ing the acceptance of ASR among potential users.

In a distant-talking scenario, there is a significant degra-
dation in ASR performance due to reverberation. The rever-
berant sound is created in enclosed spaces by reflections from
surfaces which creates a multipath sound propagation from
the source to the receiver. This effect varies with the acoustic
properties of the room and the source-receiver distance and it
is characterized by the room impulse response (RIR). The re-
verberant signal can be modeled as the convolution between
the RIR and the transmitted signal in the room.

The research leading to these results has received funding from the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement n° ITN-GA-2012-316969.

RIRs can be divided in three different parts: direct path;
early reflections (first 50 milliseconds after the direct path
corresponding to spectral colouration); and late reverberation
(reflections delayed more than 50 milliseconds causing tem-
poral smearing of the signal [1]).

Several acoustic measures have been proposed to compute
the reverberation level present in a signal by using the RIR or
the reference and reverberant signal, but in many applications
the only information available is the reverberant signal. Re-
cently, some methods have been proposed to estimate room
acoustic measures from reverberant signals such as the re-
verberation time (Tgo) which characterizes the acoustic room
properties. However, alternative measures have been shown
to be more correlated with ASR performance such as Csg [2]
which is the ratio of the energy in the early reflections over
the energy in late reflections measured in dB. Such measures
could be used to predict ASR performance or employed as a
tuning parameter in de-reverberation algorithms.

ASR techniques robust to reverberation can be divided
in two main groups [3][4]: front-end-based and back-end-
based. The former approach suppresses the reverberation in
the feature vector domain. Li et al. [5] propose to train a
joint sparse transformation to estimate the clean feature vec-
tor from the reverberant feature vector. In [6] a model of the
noise is estimated from observed data and considering the late
reverberation as additive noise the feature vector is enhanced
by applying Vector Taylor series. A feature transformation
based on discriminative training criterion inspired on Maxi-
mum Mutual Information is suggested in [7]. The latter ap-
proach, back-end-based, modifies the acoustic models or the
observation probability estimate to suppress the reverberation
effect. Sehr et al. [8] suggest to adapt the output probabil-
ity density function of the clean speech acoustic model to the
reverberant condition in the decoding stage. Selection of dif-
ferent acoustic models trained for specific reverberant condi-
tions using a estimation of Tgq is proposed in [9]. The idea
in [10] is to add to the current state the contribution of pre-
vious acoustic model states using a piece-wise energy decay
curve which considers the early reflections and late reverbera-



tion as different contributions. In addition to front-end-based
and back-end-based approaches, signal-based methods are in-
tended to de-reverberate the acoustic signal. In [11] a comple-
mentary Wiener filter is proposed to compute suitable spectral
gains which are applied to the reverberant signal to suppress
late reverberation. In [12] a denoising autoencoder is used
to clean a window of spectral frames and then overlapping
frames are averaged and transformed to the feature space. All
these three approaches may be combined to create complex
robust systems [13].

Additionally, ASR techniques robust to reverberation can
be also split according to the number of microphones used
to capture the signal into single-channel [6] or multi-channel
methods based on beamforming techniques [14].

The method proposed in this work is a hybrid approach
based on front-end-based and back-end-based single-channel
techniques. The idea is to estimate Csg [15] from the rever-
berant signal and use this estimation to select different acous-
tic models which were trained including Csq in the feature
vector. The final feature vector size keeps the original dimen-
sionality by applying HLDA [16]. The technique was tested
within the ASR task of the REVERB challenge [17] which
was launched by the IEEE to compare ASR performance on
a common data set of reverberant speech.

The remainder of this paper is organized as follows: in
Section 3 the challenge data is analysed. Section 4 describes
the methods proposed and Section 5 discusses the perfor-
mance of the these techniques. Finally, in Section 6 the
conclusions are drawn.

2. C59 ESTIMATOR

This Csq estimator has recently been proposed in [15], there-
fore only an outline is provided here. This method computes
a set of features from the signal which can be divided into
long-term features and frame-based features. The former
features are taken from Long Term Average Speech Spec-
trum (LTASS) deviation by mapping it into 16 bins with
equal bandwidth and from the slope of the unwrapped Hilbert
transformation. The latter group is created with pitch pe-
riod, importance weighted Signal to Noise Ratio (iISNR),
zero-crossing rate, variance and dynamic range of Hilbert
envelope and speech variance. In addition spectral centroid,
spectral dynamics and spectral flatness of the Power Spec-
trum of long term Deviation (PLD) are included in the feature
vector as well as 12th order Mel-Frequency Cepstral Coeffi-
cients (MFCCs) with delta and delta-delta and Line Spectrum
Frequency (LSF) features computed by mapping the first 10
LPC coefficients to LSF representation.

For all frame-based features, excluding PLD spectral dy-
namics and the 12th order MFCC:s, the rate of change is com-
puted. The complete feature vector is created by adding to the
long-term features the mean, variance, skewness and kurtosis
of all frame-based features and therefore creating a 309 ele-

ment vector. Finally, a CART regression tree [18] is built to
estimate Csg using the complete feature vector.

3. ANALYSIS OF THE CHALLENGE DATA

The database provided in REVERB challenge comprises 3
different sets of 8-channel recordings: training, development
set and evaluation set. This section analyses the RIRs of the
training set and the reverberant recordings of development
test in terms of Csq because this is a key aspect in the de-
sign of the algorithms proposed in this work. Evaluation test
set is not analysed because this set must be only used to assess
the algorithms.

Figure 1 shows the histogram of the 24 training RIRs ac-
cording to Csg including all channels of each response. This
acoustic parameter is computed as follows,

S K2n)
== 3 | 4B, 1y
Zn:N50+1 hQ(n) (

where h is the RIR and Njq is an integer number of samples
corresponding to 50 milliseconds after the time arrival of the
direct path.

The training RIRs cover a wide range of Csg, approxi-
mately 25dB. These RIRs are used to create the data set em-
ployed to train our Cs( estimator [15] by convolving these
RIRs with the clean training set (i.e. WSJICAMO training set
[19D).

Cs0 = 101logy (
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Fig. 1. Ground truth Csg value of the training RIRs.

Figure 2 displays the histogram for each reverberant con-
dition (clean, near and far) according to the Cs( estimated
with our model. The first histogram represents the distribu-
tion of clean recordings according to the Csq estimated. This
distribution is located at high Cs values indicating very low
levels of reverberation. These signals are recorded in a five by



five meters room with approximately the same recording con-
figuration [19] for all speaker however some specific speak-
ers have a lower estimated Csq (centered at approximately 19
dB). The second plot displays the histogram of those record-
ings with speaker placed near (50 cm) to microphone array. It
shows a significant difference between the small room record-
ings (Rooml1) which are less reverberant, and the medium
and large room recordings (Room2 and Room3 respectively)
which have a higher reverberation level. At the bottom of
Figure 2 is represented the distribution of speech signals with
the speaker far (200 cm) from the microphone. In this case,
the estimated Cgq for all recordings have been dramatically
decreased. All these Cgg estimations are in accordance with
the baseline results for ASR task (Table 3 in [17]): recordings
with low Cs result in high word error rate while signals with
high Cs¢ perform considerably better.

Figure 3 shows the distribution of the real recordings cap-
tured in a reverberant meeting room for two different dis-
tances: near (~=100 cm) and far (~=250 cm). It shows that
both configurations are similar in terms of Csg which agrees
with the ASR performance (both have a similar word error
rate).

The performance of the Csq estimator can not be tested
in this development test because the RIRs of this set were
unknown.

4. METHODS

In this section we describe different configurations for rever-
berant speech recognition. The idea underneath these meth-
ods is to exploit the Cs( estimation to build an ASR robust to
reverberation.

4.1. Csg as a new feature

In this approach, the estimated Cso of the utterance is in-
cluded as an additional feature. The baseline recognition sys-
tem uses the standard feature vector with 13 mel-frequency
cepstral coefficients and with the first and second derivatives
of these coefficients followed by cepstral mean subtraction.

The first configuration proposed (CsoFV) is to add Csg
estimation directly to this feature vector. Therefore the modi-
fied feature vector comprises 40 elements.

The second configuration (C5oPCA) aims to decrease
the dimensionality of the previous 40 element feature vector
by employing principal component analysis decomposition
(PCA). This technique is based on finding the eigenvectors of
the scatter matrix S

S = Z(Xk —m)(x; —m)’, 2)
=1

where xj, represents the feature vector of the frame k, n the
total number of frames and m is the sample mean. The data

is projected onto the eigenvector space and only the N eigen-
vectors with the highest eigenvalues are kept to build the new
feature space. In this case [V is set to 39. This transformation
reduces the dimensionality by keeping the dimensions with
the highest variance (high eigenvalues), so PCA may not im-
prove the discrimination between classes.

A third configuration (C5oHLDA) is tested based on re-
ducing the feature vector dimension using linear discriminant
analysis. This method projects the data in a new space by ap-
plying a linear transformation. Unlike PCA, this transforma-
tion aims to retain the class-discrimination in the transformed
feature space. The linear function applied to data is computed
by maximizing the ratio of between-class scatter to within-
class scatter matrix. In this work a model-based generaliza-
tion of linear discriminant analysis [16] is used. In this case
the linear transformation is estimated from Gaussian models
using expectation-maximization algorithm.

In all these configurations, the acoustic models are re-
trained since the feature extraction module is modified.

4.2. Model selection

This back-end approach is based on selecting the optimal
acoustic model according to the level of reverberation present.
In this work we use Cs( to measure the amount of reverber-
ation in the signal instead of Tg( as in [9] because this last
parameter measures the room acoustic properties. More-
over Cso was shown to be highly correlated with the ASR
performance [15][2] which makes it suitable for this purpose.

The first configuration (Clean&Multi cond.) is based
on selecting between the two acoustic models provided in
the challenge (clean-condition HMMs and multi-condition
HMMs) according to the level of Cgy estimated from the
signal. After performing some experiments and looking at
the analysis carried out in section 3, we set the threshold
to determine which acoustic model is used in the decoder
to C50=24.9 dB. This threshold provides the best separation
between clean and reverberant signals in the development
test set. Recordings with estimated Csg higher than 24.9 dB
are recognized by applying clean-condition HMMs whereas
recordings with Cs( lower than this threshold are decoded
employing multi-condition HMM:s.

Following configurations are based on training new rever-
berant acoustic models. The data set used to train the models
is always the clean training set convolved with the training
RIRs (Figure 1). It is worth noting at this point that all utter-
ances must be convolved with the subset of training RIRs to
create each of the reverberant models, otherwise representa-
tive data of the acoustic units may be not included in the train-
ing. The first approach is to create three reverberant models
(MS3) according to the Csq values of the RIRs. Using Fig-
ure 2 and Figure 3 the two thresholds are set to C5¢9=10 dB
and C50=20 dB. The aim is to cluster the development test
set in three groups with similar ASR performance and train a
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Fig. 2. Estimated Cs distribution of the simulated data subset of development test set. First plot represents the Cs distribution
for clean data; second chart shows the Cyq distribution for near distance recordings; and the third graph is the Cyq distribution
for far distance recordings. Blue bars represent the small room; green bars represent medium room; and red bars represent large

room.
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Fig. 3. Estimated Cs( values of the real data subset of development test set. Blue bars represent near distances between speaker

and microphone; and red bars represent far distances.

model for each group. The most reverberant model is trained
with the RIRs that have Csqy lower than 10 dB. The second
acoustic model is trained with RIRs that have Csy between
10 dB and 20 dB. Finally the third model, which represents
the least reverberant conditions, is trained with those RIRs
with a Cs¢ higher than 20 dB. These acoustic models are se-
lected in the recognition stage by applying exactly the same
training thresholds. The first chart in Figure 4 represents this
configuration.

Next configuration (MS5) includes a new idea in the train-
ing: overlap training data to build models. In all cases the
overlapping used was approximately 50% of the size of the

neighbouring models. This configuration keeps the same pre-
vious models (MS3) and adds two additional models in the
transitions. These two models are trained with data already
included in the original models and located in the transition
area between two neighbour acoustic models in terms of Csg
which provides a smoother transition between acoustic mod-
els. The most representative model to the reverberation level
estimated from the utterance is selected in the recognition
phase. The bottom plot of Fig. 4 represents this idea. This
chart shows that HMM number 1, 3 and 5 are still trained
as HMM number 1, 2 and 3 of MS3. The difference is in
the thresholds used to select these models in the recognition
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Fig. 4. Comparison of MS3 and MS5 configurations for training the acoustic (red bars) models and recognizing testing data
(green bars) according to Csg. The difference is in the overlapping of the training data for MS5 configuration.

stage (green bars) and the incorporation of overlapped models
(HMM number 2 and 4).

Additional configurations were tested by increasing the
number of models trained: 8 overlapped acoustic models
(MS8), 11 overlapped acoustic models (MS11), 14 over-
lapped acoustic models (MS14) and 18 overlapped acoustic
models (MS18). These models are obtained by further divid-
ing the original MS3 configuration. By increasing the number
of models the width of the training data of each model is de-
creased in terms of Cs¢ which creates acoustic models more
specific for each reverberant environment. Figure 5 shows
the settings used for MS11.

4.3. Model selection including C5 in the feature vector

This method combines two different approaches described be-
fore: Cs0HLDA and model selection. Figure 6 shows the
block diagram of this method where green modules represent
the modifications included to design this method. Firstly, Csq
is estimated from the speech signal which is then included in
the feature vector before applying the HLDA transformation
and also used to select the most suitable acoustic model.

Three different numbers of acoustic models are tested:
3 (MS3+ C50HLDA), 5 (MS5+C50HLDA) and 11 (MS11+
CsoHLDA) following the configuration presented in Figure 4
and Figure 5 respectively.

5. RESULTS & DISCUSSION

In this section we present the results of the methods described
in the previous section and we compare the performance of
each in terms of word error rate (WER). Table 1 presents the
average of WER achieved with the non-reverberant record-
ings (Clean), simulated reverberant recordings (Sim.) and real
reverberant recordings (Real), whereas Table 2 shows with

more detail these results for each subset of the evaluation test
set including the average of all subsets in the last column.
Moreover, Figure 7 summarizes these results displaying the
average WER for development test set and evaluation test set.

Clean | Sim. | Real

Avg. Avg. Avg.

Clean-cond. 10.94 | 51.86 | 88.51
Multi-cond. 30.16 | 29.52 | 56.95
Clean&Multi cond. | 18.26 | 29.22 | 56.95
CsoHLDA 26.41 | 28.02 | 56.12
MS3 28.00 | 27.93 | 59.59
MS3+C5oHLDA 24.41 | 25.70 | 57.00
MS5 23.22 | 26.81 | 57.88
MS5+CsgHLDA 20.93 | 25.22 | 55.97
MS8 23.14 | 26.17 | 56.40
MS11 22.07 | 26.40 | 56.80
MS11+C5oHLDA | 20.55 | 24.52 | 54.21
MS14 22.85 | 26.31 | 57.48
MS18 23.95 | 26.51 | 58.06

Table 1. WER (%) averages obtained in evaluation dataset.
First two rows correspond to the baseline methods and the
remainder are the methods proposed in this work.

The baseline methods considered to compare the perfor-
mance consist of decoding the data using the two acoustic
models provided in the REVERB challenge: the acoustic
model trained with clean data (Clean-cond.) and the acous-
tic model trained with reverberant data (Multi-cond.). The
performance of these baselines are shown in the first two
rows of Table 1 and Table 2. Clean-cond. models provide a
better performance in non-reverberant environments whereas
using Multi-cond. models a significant decrease of WER is
achieved for reverberant environments.
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Clean Sim. Real

Rooml | Room2 | Room3 Rooml Room?2 Room3 Rooml1
near ‘ far near ‘ far near ‘ far near ‘ far Avg.
Clean-cond. 10.50 11.51 10.81 | 15.29 | 25.29 | 43,90 | 85.80 | 51.95 | 88.90 | 88.71 | 88.31 | 47.36
Multi-cond. 30.29 30.07 30.11 | 20.60 | 21.15 | 23.70 | 38.72 | 28.08 | 44.86 | 58.45 | 55.44 | 34.67
Clean&Multi cond. | 17.67 18.25 18.87 | 18.69 | 21.11 | 23.78 | 38.72 | 28.14 | 44.86 | 58.45 | 55.44 | 31.27
CsoHLDA 26.33 26.82 26.09 | 18.57 | 19.48 | 21.21 | 37.74 | 27.85 | 43.29 | 57.84 | 54.39 | 32.69
MS3 28.11 27.22 28.66 | 17.76 | 21.09 | 22.19 | 36.39 | 29.07 | 41.07 | 61.45 | 57.73 | 33.70
MS3+Cs;oHLDA 24.40 24.12 2472 | 16.50 | 19.45 | 20.45 | 33.51 | 26.89 | 37.38 | 58.67 | 55.33 | 31.03
MS5 22.77 22.96 23.94 | 16.44 | 19.01 | 20.78 | 36.95 | 26.97 | 40.73 | 59.57 | 56.18 | 31.48
MS5+CsoHLDA 20.72 20.66 21.41 | 16.59 | 17.30 | 19.92 | 33.56 | 25.39 | 38.56 | 57.30 | 54.63 | 29.64
MS8 22.77 22.19 2445 | 16.35 | 18.49 | 2098 | 34.62 | 26.87 | 39.70 | 57.59 | 55.20 | 30.83
MS11 22.48 21.40 22.33 | 16.64 | 18.42 | 2097 | 35.99 | 26.58 | 39.82 | 58.80 | 54.79 | 30.74
MS11+C5oHLDA 20.69 20.73 20.22 | 15.54 | 17.10 | 19.63 | 33.00 | 25.39 | 36.43 | 55.57 | 52.84 | 28.83
MS14 23.09 22.48 2298 | 17.35 | 18.35 | 21.14 | 35.39 | 25.76 | 39.87 | 58.70 | 56.25 | 31.03
MS18 23.38 23.83 24.64 | 16.93 | 18.30 | 21.37 | 35.63 | 26.86 | 39.96 | 59.47 | 56.65 | 31.54

Table 2. WER (%) obtained in evaluation dataset. First two rows correspond to the baseline methods and the remainder are the

methods proposed in this work.

The method C5¢FV provides a similar performance com-
pared with the baselines. This outcome is due to the fact that

we are using diagonal covariance matrix to build the acous-
tic model. Therefore this feature only provides information
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regarding the probability of the acoustic unit to be seen in
this reverberant environment not taking into account possi-
ble dependences with the MFCC. C5oPCA adds Cs( estimate
in the feature vector but the performance achieved is signif-
icantly lower due to the computation of the transformation
matrix followed by PCA. These results are excluded in Table
1 and Table 2 because of the poor performance. On the other
hand, the last method described in section 4.1 (C5oHLDA)
outperforms on average the WER obtained with the baselines.
The main reason for this result is the use of the discriminative
transformation matrix to combine the feature space.

Table 1 and Table 2 also display the performance obtained
with the methods described in section 4.2 based on model se-
lection. It shows that using Cs to select between the acoustic
models provided by REVERB challenge (i.e., Clean&Multi
cond.) alower WER than using only one of them is achieved.
Further improvement can be achieved by training more rever-
berant models. MS3 configuration employs three reverberant
models (upper plot in Figure 4) and the performance in rever-
berant conditions has been improved in most of the situations
but on average the error rate has been increased with respect
to Clean&Multi cond. mainly due to the poor performance in
clean environments. The performance of this configuration is
improved with more than 2% of WER by only overlapping the
training data to build the acoustic models (MS5). Increasing
the number of models trained using the overlapping of the re-
verberant data technique (i.e., MS8, MS11, MS14 and MS18)
results in a further reduction of WER. These results show that
the best performance is obtained with MS11, while after this
point an increase in the number of models produces an in-
crease in WER. This could be due to an insufficient accuracy
of the Csg estimator.

Finally, the system presented in Figure 6 is tested by
training 3 reverberant models (MS3+C5oHLDA), 5 (MS5+
Cs0HLDA) and 11 (MS11+C5oHLDA). The last two con-

figurations are trained using the overlapping of the training
data. A significant improvement is obtained by combining
both methods; the WER decreases by 2% with respect to
the error achieved using only model selection. As is clearly
shown in Figure 7, the best performance is obtained with
MS11+C5oHLDA which approximately outperforms the best
baseline method (Multi-cond.) by 6% in both test sets.

Table 1 and Table 2 highlight in bold the lowest WER
obtained in each data set. MS11+CsoHLDA presents the
best performance in reverberant conditions but Clean&Multi
cond. shows the best performance in clean condition. This
is mainly because all the data used to train MS11+C5gHLDA
is reverberant data while Clean&Multi cond uses reverber-
ant and clean data to train the acoustic models. Therefore
MS11+C50HLDA could be further improved including a
clean acoustic model to recognize non reverberant data.

6. CONCLUSIONS

In this paper we have shown various approaches for single-
channel reverberant speech recognition using the Cso mea-
sure. One approach investigated was to include the Cs( as an
additional feature in the ASR system. This approach helped
to improve the ASR performance of the best baseline by a
relative word error rate reduction (WERR) of 5.71%. Another
approach was to use the Csg information to perform acoustic
model selection, which in turn gave a WERR of 11.33%.
The best performance was achieved by combining both ap-
proaches, leading to a WERR of 16.84% (6% absolute).
These results clearly indicate that Csy can be successfully
used for reverberant speech recognition tasks.

It was also shown that overlapping the training data in the
creation of reverberant acoustic models (according to the Csg
value) can significantly improve ASR performance.



(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

(10]

7. REFERENCES

T. H. Falk and W.-Y. Chan, “Temporal dynamics
for blind measurement of room acoustical parameters,”
IEEE Transactions on Instrumentation and Measure-
ment, vol. 59, no. 4, pp. 978-989, 2010.

A. Tsilfidis, 1. Mporas, J. Mourjopoulos, and N. Fako-
takis, “Automatic speech recognition performance in
different room acoustic environments with and without
dereverberation preprocessing,” Computer Speech &
Language, vol. 27, no. 1, pp. 380-395, 2013.

T. Yoshioka, A. Sehr, M. Delcroix, K. Kinoshita,
R. Maas, T. Nakatani, and W. Kellermann, ‘“Making ma-
chines understand us in reverberant rooms: Robustness
against reverberation for automatic speech recognition,”
IEEFE Signal Processing Magazine, vol. 29, no. 6, pp.
114-126, 2012.

R. Haeb-Umbach and A. Krueger, Reverberant Speech
Recognition, pp. 251-281, John Wiley & Sons, 2012.

W. Li, L. Wang, F. Zhou, and Q. Liao, “Joint sparse rep-
resentation based cepstral-domain dereverberation for
distant-talking speech recognition,” in Proc. IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2013, pp. 7117-7120.

T. Yoshioka and T. Nakatani, “Noise model trans-
fer using affine transformation with application to large
vocabulary reverberant speech recognition,” in Proc.
Acoustics, Speech and Signal Processing (ICASSP),
2013, pp. 7058-7062.

Y. Tachioka, S. Watanabe, and J.R. Hershey, “Effective-
ness of discriminative training and feature transforma-
tion for reverberated and noisy speech,” in Proc. IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2013, pp. 6935-6939.

A. Sehr, R. Maas, and W. Kellermann, “Model-based
dereverberation in the logmelspec domain for robust
distant-talking speech recognition,” in Proc. IEEE In-
ternational Conference on Acoustics Speech and Signal
Processing (ICASSP), 2010, pp. 4298—4301.

L. Couvreur and C. Couvreur, “Blind model selection
for automatic speech recognition in reverberant environ-
ments,” Journal of VLSI signal processing systems for
signal, image and video technology, vol. 36, no. 2-3, pp.
189-203, 2004.

A.W. Mohammed, M. Matassoni, H. Maganti, and
M. Omologo, “Acoustic model adaptation using piece-
wise energy decay curve for reverberant environments,”
in Proc. of the 20th European Signal Processing Con-
ference (EUSIPCO), 2012, pp. 365-369.

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

K. Kondo, Y. Takahashi, T. Komatsu, T. Nishino, and
K. Takeda, “Computationally efficient single chan-
nel dereverberation based on complementary wiener fil-
ter,” in Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2013, pp.
7452-7456.

T. Ishii, H. Komiyama, T. Shinozaki, Y. Horiuchi, and
S. Kuroiwa, “Reverberant speech recognition based on
denoising autoencoder,” in Proc. INTERSPEECH, 2013,
pp- 3512-3516.

M. Delcroix, K. Kinoshita, T. Nakatani, S. Araki,
A. Ogawa, T. Hori, S. Watanabe, M. Fujimoto, T. Yosh-
ioka, T. Oba, Y. Kubo, M. Souden, S.-J. Hahm, and
A. Nakamura, “Speech recognition in living rooms:
Integrated speech enhancement and recognition system
based on spatial, spectral and temporal modeling of
sounds,” Computer Speech & Language, vol. 27, no.
3, pp- 851-873, 2013.

Michael L. Seltzer and Richard M. Stern, ‘“Subband
likelihoodmaximizing beamforming for speech recogni-
tion in reverberant environments,” [EEE Transactions
on Audio, Speech, and Language Processing, vol. 14,
pp- 2109-2121, 2006.

P. Peso Parada, D. Sharma, and P. A. Naylor, “Non-
intrusive estimation of the level of reverberation in
speech,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
2014.

N. Kumar and A. G. Andreou, ‘“Heteroscedastic dis-
criminant analysis and reduced rank HMMs for im-
proved speech recognition,” Speech Communication,
vol. 26, no. 4, pp. 283 — 297, 1998.

K. Kinoshita, M. Delcroix, T. Yoshioka, T. Nakatani,
E. Habets, R. Haeb-Umbach, V. Leutnant, A. Sehr,
W. Kellermann, R. Maas, S. Gannot, and B. Raj, “The
REVERB challenge: A common evaluation frame-
work for dereverberation and recognition of reverberant
speech,” in Proc. IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA),
2013.

L. Olshen, Breiman J. H., Friedman R. A., and Charles J.
Stone, “Classification and regression trees,” CRC Press,
1984.

T. Robinson, J. Fransen, D. Pye, J. Foote, and S. Renals,
“WSJCAMO: a british english speech corpus for large
vocabulary continuous speech recognition,” in Proc.
IEEE International Conference on Acoustics, Speech
and SignalProcessing (ICASSP), 1995, vol. 1, pp. 81—
84.





