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ABSTRACT

A 2-channel dereverberation method contributed to the RE-
VERB challenge is proposed in this paper. It aims at achiev-
ing robust dereverberation under different reverberant condi-
tions. 2-channel spectral enhancement method is used where
the gain of each frequency bin is controlled by acoustic scene,
which is detected based on the analysis of full-band coherent
property. A preprocessing module is supplied to satisfy the re-
quirement of enhancement. In addition, we describe the back-
end re-trained acoustic model to match the front-end signal
processing. Results, including enhancement indexes and im-
provement on recognition rate, are evaluated on the simulated
data and really recorded data provided by REVERB organiz-
ers.

Index Terms— REVERB Challenge, Dereverberation,
Spectral Enhancement, Acoustic Scene Awareness

1. INTRODUCTION

The reverberation is known to degrade severely the audible
quality of speech and performance of automatic speech recog-
nition (ASR) [1]. Lots of researches have proved that audio
processing is helpful in improving the quality of the rever-
berant speech. Meanwhile, the combination of the front-end
audio processing with the back-end speech recognition tech-
niques is also effective to improve the ASR performance in
reverberant conditions [2][3]. Among the front-end signal
processing technologies, three categories of dereverberation
methods are generally applied: 1) beamforming using micro-
phone arrays, 2) spectral enhancement, 3) blind system iden-
tification and inversion [4]. Spectral enhancement based dere-
verberation shows superiority due to its robustness in both re-
verberant and noisy environment [5]. However, under certain
enhancement method, there is usually a tradeoff between the
reverberation or noise suppressing amount and the target sig-
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nal distortion [6]. There are two reasons that cause the trade-
off. First, the models established for reverberation and target
speech signal are inaccurate and applicable in limited ranges.
Second, the spectral enhancement method has the side-effect
of music noise.

According to REVERB challenge, the reverberant data
is simulated or recorded in various rooms with different dis-
tances between source and microphones [7][8][9], and three
kinds of utterance are provided: 1-channel, 2-channel and 8-
channel. We choose the 2-channel dereverberation method for
both Speech Enhancement (SE) task and Automatic Speech
Recognition (ASR) task for three reasons. First, the 2-channel
structure is the basic topology of all microphone arrays, so the
research can be generalized to any other microphone arrays
conveniently. Second, among all the techniques of micro-
phone array, the 2-channel algorithm has the lowest require-
ment for both hardware and software, which is important for
the application of microphone array techniques. Finally, it
is ideal to fulfill the dereverberation task based on 2 sensors,
just like what the human auditory system is doing everyday,
though there is still a long way to go.

Fractional time delay alignment filter is applied to the
reverberant signal, and the acoustic scene is classified by ana-
lyzing the coherent component. Based on the acoustic scene,
an appropriate spectral enhancing scheme is selected to elim-
inate the interference as much as possible while keeping the
speech distortion always in a low level. In the ASR task, late
reverberation is paid more attention to because early reflec-
tions are beneficial to recognition rate [10][11]. The back-end
ASR is based on a triphone HMM architecture as in [1]. The
performance of the dereveberation method is tested by the
recognizers with acoustic models of ”clean-condition” and
”multi-condition” HMMs [12], with and without unsuper-
vised Constrained Maximum Likelihood Linear Regression
(CMLLR) model adaptation. What’s more, we additionally
re-train the acoustic model to adapt to the potential distortion
in the front-end enhanced signals, and the recognition result
is also given.

This paper is organized as follows. In Section 2, system
description for REVERB Challenge is introduced and front-
end processing is mainly focused on. Section 3 gives the
back-end characterization. In Section 4, performance on ob-
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Fig. 1. Block Diagram of the proposed system for REVERB challenge.

jective evaluation is supplied recommended by organizers of
challenge. At last, the conclusion is given in Section 5.

2. SYSTEM OVERVIEW

Fig.1 shows the overall system proposed for REVERB chal-
lenge. It contains two basic modules, front-end signal pro-
cessing module and back-end evaluation module. In the front-
end module, we handle a pre-processing module before dere-
verberation.

2.1. Database

In the REVERB challenge, both simulated and really record-
ed data are provided. The simulated data (SimData) is con-
volved by clean utterance from WSJCAM0 corpus [7] with
the recorded room impulse response (RIR) in different room-
s. The reverberation time (T60) of the rooms are 250ms,
500ms and 700ms respectively. Recorded background noise
is added to the reverberant data at a fixed signal-to-noise ra-
tio (SNR) of 20dB. The really recorded data (RealData), ut-
terances from the MC-WSJ-AV corpus [8], consists of ut-
terances recorded in a noisy and reverberant room with re-
verberation time of 700ms. Both SimData and RealData in-
clude two types of distances between the speaker and micro-
phone array (near=50cm and far=200cm). The develop and
test data are all from the SimData and RealData databases
under the following important assumptions. First, there is no
drastic change in RIR within an utterance. Second, relative
speaker-microphone position changes from utterance to utter-
ance, which means the direction of arrival (DOA) of the target
speech signal is uncertain, and this is essential to our derever-
beration method. The recording 8-channel cicular array has
diameter of 20cm and the 2-channel microphone distance, de-
noted by dmic, can be calculated.

2.2. Pre-processing

2.2.1. Full-utterance 2-ch speech source localization

As mentioned above, DOA of target speech signal is un-
known. So a speech source localization (SSL) procedure is
under requirement for further purpose. The main difficulties
in SSL are caused by diffuse noise, reverberation and spatial
aliasing[13][14]. But their affections are different in different
frequency bins. Therefore, the main idea in the SSL is to
extract the time difference of arrival (TDOA) only from the
frequency bins with high Signal-to-Noise Ratio (SNR) and
Direct-to-Reverberate Ratio (DRR), and the spatial aliasing
is eliminated by a stepwise strategy based on the consistency
of real TDOA. A DOA estimation scheme is proposed as
follows.

Firstly, the observed signal is analyzed by short time
Fourier transform (STFT), and the proportion of coheren-
t component of each frequency bin is roughly calculated.
Then the coherent component and non-coherent component
are separately tracked in each frequency bin. Secondly, the
frequency bins which are dominated by the direct sound are
extracted, and a probability distribution of TDOA is obtained
based on low frequency band. Then, the aliased TDOAs
in high frequency bins are eliminated based on the TDOA
distribution in lower frequency band. Finally, the TDOA is
estimated based on the information of the whole frequency
band and DOA is suggested. It is worth mentioning that only
the probability distribution of TDOA is full-utterance based
which indicates that if the DOA information is priori known,
the following core procedures can be realized realtime.

2.2.2. Time-delay estimation and alignment

With the DOA information, a delay alignment filter should be
applied to observed signals at sensors to satisfy the require-
ment of beamforming and other operations. Ideal time-delay
alignment filter needs the amplitude response keep being 1
and the group delay be constant. Based on the DOA informa-
tion of target speech signal derived from SSL module, group
delay τ between the time delayed channel and the reference
channel can be deducted by Eq.(1), where ψ is DOA, c is the
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Fig. 2. Amplitude and Phase frequency response of alignment
filter with dmic = 7.65cm and filter order equals to 32 where
signal comes from 30◦ far field.

sound velocity in the air.

τ = dmicsin(ψ)/c (1)

Accordingly, phase response of frequency f is shown in
Eq.(2).

ϕ(f) = 2πfτ (2)

Assuming that the the alignment filter is FIR and limiting
the filter order, we truncate the filter with a Hanning window
and apply IDFT to the ideal frequency response of alignment
filter. By filtering the frame based observed signal with the
filter, we can consider the target signal comes from straight
front of broadside microphones. It is a significant procedure
to perform beamforming later. Fig.2 gives an example of
alignment filter. From the figure, we observe that only the
high frequency part will have distortion. And this distortion
will be considered in the dereverberation method later.

2.3. 2-channel Dereverberation

2.3.1. Signal model

Let s(n) represent the target clean signal, and x′m(n) is the
time-aligned signal at sensorm(m = 1, 2) to keep distinction
with observed signals. nm(n) is the noise of environment.
hm(t) can be seen as the time-delayed RIR which is the con-
volution of real RIR from target signal to sensorm(m = 1, 2)
and alignment filter obtained above. The observed signal per
channel can be expressed as follows.

x′m(n) = hm(t) ∗ s(n) + nm(n) (3)

Applying STFT to the 16kHz time-aligned signal, we
have sinal expression at lth frame and kth frequency bin in
time-frequency domain.

X ′
m(l, k) = Hm(l, k)S(l, k) +Nm(l, k) (4)

2.3.2. Acoustic scene aware controller

The database to be recognized contains various conditions of
rooms and speaker-mic distance. To our knowledge, it’s dif-
ficult to tackle the reverberant signal well in all kinds of con-
ditions with 2-channel data. Before enhancement, we should
priori acknowledge the acoustic scene so that we can legiti-
mately choose strategy of dereverberation.

Reverberation, especially late reverberation, shows isotrop-
ic property as well as environment diffuse noise, while the
direct sound shows strong coherent property [15]. There
are two main acoustic scenes of the room we should blindly
aware. One is the reflection condition which can be inter-
preted by reverberation time (T60) and the other one is the
speake-mic distance. By estimating the proportion of coher-
ent component, the effects of two are synthesized. All the
diffuse part can be seen as noise to be filtered. We follow the
Coherent-to-Diffuse energy Ratio (CDR) estimation in [16],
which is expressed as follows.

ϵ(ejΩ) =
|sinc(Ωfsdmic/c)|2 − |ΓX1X2(e

jΩ)|2

|ΓX1X2(e
jΩ)|2 − 1

(5)

ϵ(ejΩ) is CDR estimator of each frequency bin and ΓX1X2

is the expression of complex coherence function [17]. To our
knowledge, global CDR, denoted by ϵ̂, could reduce the esti-
mation variance since the frame length often less than order
of RIR. Through full-band averaging and recursively smooth-
ing, global CDR acts as an indicator of coherent component
strength, which is mainly direct sound. Though there exist-
s bias of estimation especially in low DRR case, it’s still a
reasonable acoustic scene aware controller. And analysis of
coherent property is the main reason we choose 2-ch frame-
work rather than 1-ch one.

2.3.3. Spectral enhancement

Spectral Enhancement method has a generalized form. The
estimate of the amplitude spectrum of the target signal can be
expressed as follows.

|Ŝ(l, k)| = G(l, k)|X̂(l, k)| (6)

G(l, k) is the gain estimated on each frequency bin and
|X̂(l, k)| is the amplitude spectrum of signal to be enhanced.
Before overlap-and-add scheme, regardless of leakage be-
tween frequency bins causing by STFT, both G(l, k) and
X̂(l, k) should chosen cautiously versus distortion to achieve
robustness.

2.3.4. Frame based processing

Up to now, lots of 1-channel and 2-channel dereverbera-
tion methods are proved efficiency under the framework of
spectral enhancement and achieve robustness to noise com-
pared with inverse filtering. Fixed beamforming, such as
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Delay-and-Sum Beamformer (DSB), helps to suppress the
reverberation based on priori DOA information though its
suppression ability is limited. Late reverberaion suppressing
method using generalized statistic model of reverberation
[18] shows outstanding performance especially when rever-
beration is strong. Based on the controller mentioned above,
we form different estimators of G(l, k) and X̂(l, k). Glate is
the gain of each frequency bin which is generated by spectral
subtraction method based on late reverberation estimation
[18]. Using Eq.(5), Gcdr is formed under Wiener solution
which can be interpreted by ϵ(l, k)/(1 + ϵ(l, k)) (where
ϵ(l, k) = ϵ(ejΩ)). X0 and XDSB , which are separately 1-ch
extraction of observed reverberant signal and output of DSB
beamformer shown by Fig.1, are two estimators of X̂(l, k).

Three parameters σ1, σ2, σ3 (constant, from large to s-
mall) are introduced to control the selection of G(l, k) and
X̂(l, k). An integrated strategy of spectral enhancement
method is proposed as follows.

Algorithm 1 Strategy of Spectral enhancement.
1: if ϵ̂ > σ1 then
2: G(l, k)(FFT bins/3 : FFT bins) = 1
3: G(l, k)(1 : FFT bins/3− 1) = max(Glate, Gcdr)
4: X̂(l, k) = X0

5: else if ϵ̂ > σ2 then
6: G(l, k) = max(Glate, Gcdr)
7: X̂(l, k) = XDSB

8: else if ϵ̂ > σ3 then
9: G(l, k) = min(Glate, Gcdr)

10: X̂(l, k) = XDSB

11: else
12: G(l, k) = GlateGcdr

13: X̂(l, k) = XDSB

14: end if

Spectral enhancement strategy suggested above separates
the acoustic scene into four cases. In the first case, the acous-
tic scene is ideal so that the speech signal recorded is very
close to clean speech. Even distortion of alignment in high
frequency band would have brought negative effects. That’s
the reason we still save the original observed signalX0. Low-
er frequency bins are more likely to be affected by reverber-
ation. Therefore, we intend to keep high frequency part un-
processed. In the second and third cases, a moderate trade-
off between dereverberation and signal distortion is achieved.
Glate or Gcdr respectively shows their superiority when re-
verberation is relatively strong or weak. In the last case, more
reverberation reduction means better performance when re-
verberation is strong enough.

To avoid music noise, both time recursive and adjacent
frequency gain smoothing are conducted. The recovered sig-
nal is obtained by inverse STFT and overlap-and-add scheme.
The phase of recovered speech signal equals the noisy phase

of XDSB . All the processing is with windows of 512 points
and step-size of 256 points which means the result of a DFT
with length 512 (32 ms) at a shift of 16 ms. So the FFT bins
above equals half the number of frequency bins plus one.

3. BACK-END DESCRIPTION

Baseline models of ASR task as well as re-trained model
are provided in this section. The ”clean-condition” base-
line system uses 39D mel-frequency cepstral coefficients
(MFCCs) including Delta and Delta-Delta coefficients as
features. As acoustic models, it employs tied-state HMMs
with 10 Gaussian components per state trained according to
the maximum-likelihood criterion [1]. All the training data
for ”clean-condition” HMMs is from WSJCAM0 corpus [7].
Further, the model is re-trained using the features of artifi-
cially distorted 7861 utterances to form the ”multi-condition”
HMMs. The utterances are in mixture with 24 kinds of RIRs
and 6 kinds of noises. We test the enhanced signals on the two
baseline systems both using and not using the unsupervised
CMLLR model adaptation.

Under the framework of HTK based recognizer organizer
provided, we re-train the acoustic model of ”multi-condition”
HMMs. The proper starting point is that the artificially dis-
torted training signals are mismatch with the enhanced ones.
Therefore, Substituting the 7861 reverberant noisy utterances
by the enhanced signal and enlarging the re-training data
with 7861∗24 enhanced convolving utterances, we get the
re-trained ”multi-condition” HMMs. We also provide ASR
result of this re-trained acoustic model. Then the five possible
cases are:

Clean+noEnh: ”clean-condition” HMMs without dere-
verberation;

Clean+Enh: ”clean-condition” HMMs with dereverbera-
tion;

Multi+noEnh: ”multi-condition” HMMs without dere-
verberation;

Multi+Enh: ”multi-condition” HMMs with dereverbera-
tion;

ReTrn+Enh: re-trained ”multi-condition” HMMs with
dereverberation.

4. RESULT AND ANALYSIS

4.1. SE task

This section provides the results of SE task from the per-
spective of Cepstrum Distance (CD) (Table 1), Speech-to-
Reverberation Modulation energy Ratio (SRMR) (Table 2
and 6), Log Likelihood Ratio (LLR) (Table 3), Frequency-
weighted segmental SNR (FWSegSNR) (Table 4), and PESQ
(Table 5) on the test set, where org means the original rever-
berant signals unprocessed and enh represents the enhanced
speech signals.
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It can be seen from the various objective indexes of SE
task that the spectral enhancement based dereverberation
method achieves improvement on speech quality. The im-
provement is shown by two aspects. First, Reverberation
and noise reduction are achieved from the objective measures
of average SRMR and FWSegSNR of different reverberant
rooms. Second, signal distortion is lower after processing
shown by CD. It is worth mentioning that at the same time in-
troducing the reverberation suppression to reverberant signal
with large reverberation time, CD of enhanced signals with
small reverberation time keep small, which can be interpreted

Cepstral distance in dB
Room mean median

org enh org enh
room1 near 1.99 1.96 1.68 1.69
room1 far 2.67 2.78 2.38 2.65
room2 near 4.63 3.52 4.24 3.35
room2 far 5.21 4.51 5.04 4.25
room3 near 4.38 3.57 4.04 3.43
room3 far 4.96 4.42 4.73 4.18
average 3.97 3.46 3.69 3.26

Table 1. Cepstral distance of test SimData before and after
dereverberation.

SRMR (only mean used)
Room mean median

org enh org enh
room1 near 4.50 4.13
room1 far 4.58 4.53
room2 near 3.74 3.88
room2 far 2.97 4.25
room3 near 3.57 3.80
room3 far 2.73 3.84
average 3.68 4.07

Table 2. SRMR of test SimData before and after dereverber-
ation.

Log likelihood ratio
Room mean median

org enh org enh
room1 near 0.35 0.35 0.33 0.33
room1 far 0.38 0.45 0.35 0.42
room2 near 0.49 0.56 0.40 0.49
room2 far 0.75 0.78 0.63 0.71
room3 near 0.65 0.65 0.59 0.60
room3 far 0.84 0.80 0.76 0.75
average 0.58 0.60 0.51 0.55

Table 3. Log likelihood ratio of test SimData before and
after dereverberation.

FWSegSNR in dB
Room mean median

org enh org enh
room1 near 8.12 9.86 10.72 10.99
room1 far 6.68 8.56 9.24 8.72
room2 near 3.35 7.19 5.52 8.76
room2 far 1.04 4.29 1.77 6.43
room3 near 2.27 5.59 4.21 6.82
room3 far 0.24 3.04 0.89 4.78
average 3.62 6.42 5.39 7.75

Table 4. Frequency-weighted segmental SNR of test SimDa-
ta before and after dereverberation.

PESQ (only mean used)
Room mean median

org enh org enh
room1 near 2.14 2.09
room1 far 1.61 1.64
room2 near 1.40 1.69
room2 far 1.19 1.36
room3 near 1.37 1.53
room3 far 1.17 1.23
average 1.48 1.59

Table 5. PESQ of test SimData before and after dereverber-
ation.

SRMR (only mean used)
Room mean median

org enh org enh
room1 near 3.17 4.44
room1 far 3.19 4.67
average 3.18 4.55

Table 6. SRMR of test RealData before and after enhance-
ment.

by the result of room1 near in Table 1. It owns to the first
case we choose in the enhancement strategy above. However,
all the objective indexes on average has tended to better ex-
pect LLR. This is because the distortion of spectral enhance-
ment always exists which may counteract the improvement
especially the reverberation is not strong. And because of
distant-talking scene, the signal attenuates when propagating
in the air. The attenuation can not be compensated using the
proposed spectral enhancement method. PESQ scores shown
by Table 5 also illustrate an improvement on speech signal
quality from the perspective of perceptual evaluation.

Additionally, the complexion of calculation is supplied.
The real-time-factors of SimData and RealData are 0.47 and
0.44, while real-time-factor of the reference enhancement
code provided by organiser is 0.035 [1].
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Word error rate(%)
SimData RealData

Test Data Room 1,2,3 Ave. Room 1 Room 2 Room 3 Ave. Room 1 Ave.
Clean Near Far Near Far Near Far Near Far

Clean+ nocmllr 12.84 12.49 12.13 12.48 18.06 25.38 42.98 82.20 53.54 88.04 51.68 89.72 87.34 88.53
noEnh cmllr 14.81 18.86 24.63 64.58 33.77 78.42 39.16 82.31 80.76 81.53
Clean+ nocmllr 17.43 25.25 27.85 49.48 36.51 65.94 37.06 73.91 71.34 72.62
Enh cmllr 14.47 19.47 21.19 34.86 27.16 50.50 27.93 62.66 61.58 62.12
Multi+ nocmllr 30.29 30.07 30.11 30.15 20.60 21.15 23.70 38.72 28.08 44.86 29.51 58.45 55.44 56.94
noEnh cmllr 15.99 15.52 15.70 15.73 16.23 18.71 20.50 32.47 24.76 38.88 25.25 50.14 47.57 48.85
Multi+ nocmllr 23.64 36.46 27.72 37.69 34.00 45.85 34.22 59.95 59.49 59.72
Enh cmllr 16.93 20.04 19.91 26.84 23.95 34.33 23.66 44.87 45.81 45.34
ReTrn+ nocmllr 16.59 15.84 16.41 16.27 15.64 18.76 19.79 28.56 24.01 35.15 23.64 49.50 49.49 49.49
Enh cmllr 13.76 13.43 13.62 13.60 14.76 16.52 18.23 24.79 21.09 31.50 21.14 42.10 45.17 43.63

Table 7. Word error rate for test data.

Word error rate(%)
SimData RealData

Develop Data Room 1,2,3 Ave. Room 1 Room 2 Room 3 Ave. Room 1 Ave.
Clean Near Far Near Far Near Far Near Far

Clean+ nocmllr 10.50 11.51 10.81 10.93 15.29 25.29 43.90 85.80 51.95 88.90 51.81 88.71 88.31 88.51
noEnh cmllr 12.93 17.72 24.11 72.57 30.44 79.65 39.53 83.16 84.48 83.81
Clean+ nocmllr 15.07 24.66 26.37 54.82 38.25 64.24 37.21 65.75 66.03 65.88
Enh cmllr 12.76 18.53 19.97 38.70 26.98 49.13 27.66 56.46 58.99 57.71
Multi+ nocmllr 25.79 28.44 27.32 27.18 15.49 18.90 23.51 42.40 27.25 46.07 28.92 52.96 51.61 52.28
noEnh cmllr 13.25 14.79 14.09 14.04 13.27 17.08 20.80 36.83 23.54 39.44 25.14 47.91 46.55 47.23
Multi+ nocmllr 18.02 32.45 27.88 39.59 32.12 46.27 32.71 51.72 50.92 51.32
Enh cmllr 13.91 18.04 19.20 29.01 23.66 33.88 22.94 42.11 41.01 41.56
ReTrn+ nocmllr 13.59 14.15 13.16 13.63 13.00 16.57 18.54 31.55 25.32 36.03 23.48 47.60 45.11 46.36
Enh cmllr 12.27 12.87 11.47 12.20 12.59 15.54 17.03 27.06 21.12 30.46 20.62 43.36 41.56 42.46

Table 8. Word error rate for develop data.

4.2. ASR task

For the ASR task, word error rate (WER) of test data and de-
velop data is reported as Table 7 and Table 8 show. Each table
includes the ASR results of ”clean-condition” model, ”multi-
condition” model and re-trained ”multi-condition” model. W-
ER of clean, near, far data and their average are reported sep-
arately. The ASR result of enhanced signal is matched with
the SE result previously.

Performance of dereverberation is examined using both
”clean-condition” and ”multi-condition” acoustic model.
Recognising the test set with ”clean-condition” model with-
out CMLLR adaptation, the dereverberation method achieves
decrease on WER from 51.68% to 37.06% on average of
SimData and from 88.53% to 72.62% on average of RealDa-
ta. Consistent improvement across all recording conditions
is achieved by using CMLLR which results in WER 27.93%
on SimData and 62.12% on RealData. However, recognising
with ”multi-condition” model without CMLLR adaptation,
the performance (SimData: 34.22%, RealData: 56.94%) is

worse than the ”multi-condition” baseline (SimData: 29.51%,
RealData: 59.72%) because the recognising enhanced data is
mismatch with the reverberant data used to train the ”multi-
condition” acoustic model, though using CMLLR gives a
little improvement.

To overcome the mismatch, the re-trained ”multi-condition”
HMMs gives a better result. The optimised one has a WER
23.64% on average of SimData and 49.49% on average of Re-
alData without CMLLR and finally 21.14% of SimData and
43.63% of RealData with CMLLR. The relative decreasing
rates of WER are 59.09% and 50.71% each. What’s more, the
clean test data recognized by the re-trained ”multi-condition”
model could also prove the improvement of dereverberation
method from the perspective of the matching between train-
ing and recognising, where WER decreases from 30.15%
to 16.27% on average. The develop set has the same trend.
What draws our attention is that the average WER of Real-
Data is higher than that of SimData. Two reasons may cause
the observation. One is that the utterances of RealData are
not included in training set and another is that the simulated
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data can’t imitate all the situations of real room environment.
The main reasons will be further investigated.

5. CONCLUSION

We have presented out dereverberation approach to the RE-
VERB challenge based on spectral enhancement. An acoustic
scene aware technique is proposed to make dereverberation
robust to different conditions. For SE task, objective indexes
illustrate the improvement on speech signal quality. For ASR
task, when it is combined with back-end ASR with matched
training, it produces a significant decrease on WER.
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