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ABSTRACT

This paper addresses dereverberation of speech using an un-

supervised approach utilizing speech prior and taking only

weak assumptions on reverberation. Our approach uses a long

time context representation of reverberated speech in spectral-

temporal supervectors which are decorrelated by PCA. In the

decorrelated domain, supervectors are mapped from the re-

verberant speech distribution to the clean speech distribution

and then to mel-spectral vectors. A mel-domain Wiener filter

is applied as post processing. Our results demonstrate per-

formance gains over the provided baseline recognizer, and

show that the method can be coupled to CMLLR adaptation

with cumulative benefits for clean trained models. Furthermo-

re, we show that using dimensionality reduction coupled with

the Wiener filter is better than using full-dimensional PCA in

representing small variance components in speech.

Index Terms— dereverberation, speech recognition, su-

pervector, decorrelation, unsupervised

1. INTRODUCTION

Considering automatic speech recognizers (ASR) used in

practical applications, we cannot often control the recording

conditions but are reliant on hardware which the end-users

have. The quality of microphones, recording environments

and distance between speaker and microphone can vary a

great deal. The very same ASR system may need to cope

with data from a single distant microphone, sophisticated ar-

rays and close-talk microphones. This calls for methods that

are unsupervised and not reliant on prior information about

environments, arrays or specific microphones.

The conventional method to counteract effects of reverbe-

ration or transmission lines has been to produce robust fea-

tures using cepstral mean normalization [1], modulation fil-

tered spectrograms [2] or frequency domain linear predic-
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tion [3]. Their advantage is simplicity and wide applicabili-

ty, since they make only weak prior assumptions on the da-

ta, but used alone they yield only modest performance gains.

Other approaches that can be used to improve reverberation

robustness that also make only weak assumptions are mis-

sing feature methods with masks designed for reverberation

[4, 5] or simply unsupervised adaptation [6, 7]. The advanta-

ge of Bayesian dereverberation approaches over the above-

mentioned is that they can flexibly utilize either coarse or

more precise source (speech) and filter (reverberation) mo-

dels jointly [8, 9]. However, precise modeling of the filter and

the source require computationally expensive methods such

as Monte Carlo Markov Chain sampling [9].

Almost regardless of the enhancement method, in prac-

tical ASR it is often common to utilize an adaptation method

as the last step to counteract variations from speakers or en-

vironments. The adaptation can be based on, e.g., the acous-

tic model distributions in ASR [6], or data distributions using

powerful non-linear distribution matching methods indepen-

dently of the acoustic models [7, 10]. Non-linear adaptation

can also be combined with acoustic model domain adaptation

with cumulative benefits [7, 10].

The purpose of the present study is to develop a new adap-

tation method based on distribution matching that is suitable

for dereverberation. Due to the long lasting effects of rever-

beration, we utilize decorrelated spectral-temporal supervec-

tors that include time context information. Methods related

to the present study are non-linear adaptation [7] and featu-

re space gaussianization [10]. The present study extends the

previous work specifically by addressing the problem of de-

reverberation, whereas the previous work dealt primarily with

speaker adaptation [7] or general purpose feature space gaus-

sianization [10] designed to produce features that are easy to

model with Gaussian mixtures, with no specific intention to

speech enhancement. Focusing on dereverberation leads us to

use longer feature contexts. We also utilize post-filtering met-

hods that were not addressed in the above-mentioned previous

studies. Furthermore, we discuss the mathematical motivation

why the proposed method is suitable for dereverberation.
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2. DEREVERBERATION METHOD

Dereverberation can be considered as a Bayesian inverse

problem, in which an attempt is made to recover clean speech

spectra ox given noisy speech spectra oy . Posterior distribu-

tion for dereverberated speech p(ox|oy) is then

p(ox|oy) ∝ p(ox)p(oy|ox), (1)

where p(ox) is the clean speech prior and p(oy|ox) repre-

sents the reverberant observation.

In signal processing terms, reverberation can be conside-

red as convolutive interference by a reasonable accuracy. The

convolution b(t) = (o ∗ h)(t) of a time domain speech sig-

nal o(t) and a FIR filter h(t) can be expressed as the matrix

operation

b = Ho (2)

where H is the Toeplitz matrix that represents the filter h and

b is the resulting reverberated signal.

Similarly, we can express convolution in the feature do-

main using linear transformations. First, a supervector s(t) =
[o(t)⊤ . . . o(t+T − 1)⊤]⊤ is formed from concatenation of

T consecutive frames of spectral feature vectors o(t), where
T is chosen large enough considering the length of the room

impulse response. The dimensionality of the supervector s(t)
is N = TK, where K is the dimensionality of the original

features o(t). Dropping the time index t to keep the notation

simpler, we denote by sx and sy the supervectors correspon-

ding to clean speech spectra ox and reverberant spectra oy ,

respectively. The speech features sy that are affected by con-

volution can be approximated as

sy ≈ Hysx, (3)

where the filter matrix Hy performs convolution operation

in each frequency channel with the samples included in the

supervector sx.

For a transformation matrix H corresponding to an ar-

bitrary impulse response, a linear transformation D, such as

principal component analysis (PCA), can be applied to decor-

relate the elements of transformed supervectorsHs as

c = DHs, (4)

which allows treating the elements of c one-by-one. Given a

single supervector s observed under two different convoluti-

ve distortions represented by matrices Hi and Hj , we deno-

te ci = DHis and cj = DHjs. As the system is linear,

we can write ci = Aijcj . Under the assumption that mat-

rix D successfully decorrelates both ci and cj , matrix Aij

is diagonal. In this case, we can represent the mapping as an

element-wise multiplication of cj by the diagonal elements of

Aij ,

ci(n) ≈ [Aij ]nncj(n), (5)

where n = {1, . . . , N} indexes the elements of the supervec-

tors and diagonal elements of Aij .

For speech data, however, PCA is usually applied after a

logarithmic non-linearity,

c
′ = D

′ logHs, (6)

where the log operation is computed element-wise. In this

non-linear case, we can write the corresponding transforma-

tion between a pair of supervectors as c′i = Fij(c
′

j), assu-
ming that there is a bijective non-linear transformation Fij .

By again assuming that matrix D
′ decorrelates both c

′

i and

c
′

j , we can use a set of element-wise mappings F
(n)
ij so that

c′i(n) ≈ F
(n)
ij (c′j(n)). (7)

In order to simplify the notation, from now on we operate

on individual components of the decorrelated supervectors,

and drop all indices n. To develop suitable mapping functions

F , we apply a distribution matching method similar to [7, 10].

Empirical cumulative distributionΦ(c′) of a variable c′ can be
approximated by

Φ(c′) =
1

L

L∑

k=1

θ(c′ − c′k), (8)

where θ is step function over L samples of form c′k drawn

from the distribution. It follows that simply sorting and sca-

ling data gives an approximation of its inverse cumulative di-

stribution function (ICDF). For dereverberation under a par-

ticular recording condition, we use a mapping derived from

the empirical distributions of clean speech samples c′x and re-

verberant samples c′y . We denote the ICDFs of the clean and

reverberant speech samples by Φ−1
x and Φ−1

y , respectively.

The mapping function Fxy approximating the transformation

from reverberant to clean speech is implemented by construc-

ting a lookup table Φ−1
y −→

F
Φ−1

x using Matlab interp1

with piecewise cubic interpolation. In terms of Equation (1),

this can be seen as approximating the reverberant speech pos-

terior p(c′y | c′x) and clean speech prior p(c′x) by samples of

corresponding data.

After the lookup tables are defined, a full decorrelated re-

verberant supervector c′y can be transformed to a dereverbe-

rated log-spectral supervector s̃ estimate by

s̃
′ = D

′−1
Fxy(c

′

y), (9)

where mapping Fxy is defined by applying individual F
(n)
xy

lookup tables element by element to c
′

y , and D
′−1

inverts

PCA to get back to the log spectral-temporal domain. Then

the supervector representation is dismantled to get estimates

of the dereverberated speech log mel-spectrograms õx
′. Each

vector õx
′ is obtained by taking the average of overlapping

samples from all supervectors that contain data for its time

frame.

For each corresponding linear domain frame õx =
log õx

′, we construct a frame-specific mel-spectral domain
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Wiener filter, in a manner common to many speech enhance-

ment systems [11]. We define the Wiener filter hw as

hw = õx ./õy (10)

where ./ denotes element-wise division and õy represents

reverberant data that has gone through the same PCA trans-

formation D
′ and dimensionality reduction operations as the

dereverberated data. The generation of õy omits the lookup

table mapping step which is the difference in the procedu-

re compared to generation of õx. The final enhanced mel-

spectral features are then obtained as

ôx = hw .∗ oy. (11)

In the logarithmic domain, with o
′ = log o, this can be writ-

ten as

ôx
′ = õx

′ + oy
′ − õy

′, (12)

where it can be seen more clearly that, through the residual

term oy
′ − õy

′, the filter sums back some of the variation in

the reverberant signals that is lost in the dereverberated esti-

mate õx
′, after it has been smoothed by the low-order PCA.

After obtaining the initial estimate of dereverberated

speech ôx, we apply the same process defined in equations

(3) to (12) iteratively, by substituting reverberant observation

oy with the current estimate ôx. Finally, after two iterations,

the resulting estimates ôx are used as the source of acoustic

features for the speech recognition.

3. EXPERIMENTS

This section describes the experimental evaluation of the pro-

posed system, using the data sets (Sect. 3.1) and the baseline

recognizers (Sect. 3.2) provided by the REVERB challenge.

Parameters settings of the proposed approach (Sect. 3.2) and

finally the results (Sect. 3.3) are also shown.

3.1. Data

The reverberant speech feature enhancement methods desc-

ribed in this work are evaluated on both artificially distorted

clean speech (“SimData”) and speech recorded in a noisy, re-

verberant room (“RealData”). Both data sets are provided by

the REVERB challenge, and described in detail in [12]. Se-

parate development and evaluation subsets are provided.

For SimData, clean speech utterances from theWSJCAM0

British English continuous speech recognition corpus [13] are

first distorted using measured room impulse responses, and

then mixed with measured room noise with a fixed signal-

to-noise ratio (SNR) of 20 dB. Utterances in six simula-

ted reverberant environments are provided: two speaker-to-

microphone distances (near, far) in each of three rooms of

varying size (small, medium, large). The near and far microp-

hone distances are 0.5 m and 2.0 m, while T60 reverberation

times for the small, medium and large rooms were 0.25 s, 0.5

s and 0.7 s, respectively. The total number of utterances is

1484 and 2176 for the development and evaluation subsets,

respectively.

The RealData set consists of real recordings of speakers

in a reverberant meeting room. Contents of the utterances are

based on the prompts of the WSJCAM0 corpus. The set con-

tains two different test conditions, corresponding to near and

far microphone distances of 1.0 m and 2.5 m, respectively.

There are, respectively, 179 and 372 utterances in the deve-

lopment and evaluation subsets of RealData.

3.2. Speech Recognition System and Settings

The baseline recognizer provided by the REVERB challen-

ge, based on the HTK toolkit [14], is used to evaluate the

speech recognition performance of the proposed methods.

The recognition system uses 13-dimensional Mel-frequency

cepstral coefficients (MFCCs) augmented with first (D) and

second time derivatives (DD). Hidden Markov models with

10-component Gaussian mixture emission distributions are

used to model the acoustic features. The clean speech training

set of the WSJCAM0 corpus [13] is used to train the acoustic

models.

Unsupervised constrained MLLR (CMLLR) adaptation is

optionally applied during recognition. For each test condition

(room and recording distance), adaptation coefficients for 256

regression classes are calculated based on the entire test set.

Unadapted recognition results are used to provide transcrip-

tions for the adaptation.

The proposed distribution matching (DM) system uses the

MFCC+D+DD acoustic features that are, except the feature

enhancement step, identical to those of the baseline recog-

nizer. The distribution matching based feature enhancement

step (see Section 2) is performed on theK = 23 dimensional

mel-spectral features computed during the MFCC processing

as follows.

First, the normalization method proposed in [4] is used

to further reduce the effects of any spectral and gain alte-

ration due to reverberation in the mel-spectral features. The

normalization method is based on estimating gains of each

frequency channel from the largest energy samples along the

time trajectory. This is based on the observation that large

energy time-frequency bins are more likely to contain clean

speech or early reflections than those of lower energy that

may contain energy in reverberation tails. This allows similar

normalization based on clean speech alone regardless of the

reverberation (or noise) conditions. Then spectral supervector

representation of the DM system is constructed from norma-

lized mel-spectral feature vectors and it uses a time context

of T = 20 frames. The performance is also evaluated with no

time context (T = 1).

The PCA transformation in Equation (6) is estimated for

clean speech data taken from the training part of corpus for

over 1000 utterances. For the primary approach, with a time
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Table 1. Evaluation test word error rates on clean conditions.

The results are shown for the baseline system without (Base-

line) and with (Baseline-ada) CMLLR adaptation, and simi-

larly for two versions of the proposed method, without (DM)

and with CMLLR-adaptation (DM-ada). The best results are

bolded.

Method
Room

Ave.
1 2 3

Baseline 12.89 12.64 12.13 12.55

Baseline-ada 11.78 11.42 11.21 11.47

DM 12.92 12.67 12.06 12.55

DM-ada 11.84 11.50 11.45 11.59

context of T = 20 frames, experiments are performed using

both at the full dimensionality of 460 as well as with a di-

mensionality reduction step where only the 40 principal com-

ponents are retained. A dimensionality of 12 is used for the

variant that has no time context (T = 1). In the recognition

phase, unless otherwise noted, we assume full batch proces-

sing and always collect the reverberant posterior distribution

estimates of Equation (8) based on the whole evaluation or

development test condition, and for the corresponding speech

prior we use an equal length sample taken from the clean trai-

ning set.

3.3. Results

Tables 1 and 2 show the word error rate results of the eva-

luation test on the clean and reverberant data, respectively.

For the reverberant data (Table 2), the systems can be ranked

from worst to best based on overall averages in the following

order: baseline without adaptation (Baseline), baseline with

adaptation (Baseline-ada), proposed system without adapta-

tion (DM) and the proposed system with adaptation (DM-

ada). When applied without adaptation, the proposed method

(DM) outperforms the baseline (Baseline) in all reverberant

conditions. Similarly, when each system is applied with adap-

tation, the proposed system (DM-ada) outperforms the adap-

ted baseline (Baseline-ada) in all reverberant conditions. For

clean data (Table 1), the best performing system is the ba-

seline with CMLLR adaptation (Baseline-ada), with a small

margin compared to the second best (DM-ada).

Table 3 demonstrates effects of different parameters in the

results, for three different aspects, using the development set

data. First, the effect of the time context length is addressed.

If the performance is better for contexts considerably longer

than one frame, it can be used as a evidence that a long tem-

poral context is required. In the development set results, the

system using T = 20 time frames outperforms the one using

a window length of T = 1, equivalent to having no context.

Second, we compare our primary approach of using dimen-

sionality reduction to 40 principal components to the full di-

mensional PCA that retains all components, and observe that
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Fig. 1. Real-time factor as function of batch length used for

distribution mapping.

better results in all cases are obtained for the 40-component

approach. Third, we compare results of our approach with and

without the Wiener filter. We notice that without the Wiener

filter, the performance drops even below that of the baseli-

ne system in several cases. When the parameter settings are

contrasted, we notice that having sufficient temporal context

is more important than the dimensionality reduction for the

PCA (40 vs. full), and that the Wiener filter is beneficial when

the dimensionality reduction is applied.

Figure 1 demonstrates computational time of the met-

hod without an ASR back-end, showing the real-time factor

against length of the batch used for the lookup table con-

struction. The software implementation in Matlab is run on a

single core of an Intel(R) Xeon(R) CPU E3-1230 V2 proces-

sor at 3.30 GHz. The rightmost bar in the figure denotes the

setting that was used to conduct the ASR simulations in this

study. It corresponds to using a full batch of development

set Room 3 far-condition data, which is ca. 31 min in du-

ration. The real-time factor in that case was 0.61. Required

computation drops when the batch length is reduced, as less

data is used for the lookup table construction. We did not pay

particular attention to computational efficiency, thus with a

little effort it should be possible to implement the approach

with reduced computational cost. In the present version we

have prioritized the ease of implementation at the cost of

some unnecessary computation, such as reconstructing the

lookup table for every utterance. These could be simply do-

ne once for each batch with a little effort in optimizing the

implementation.

4. DISCUSSION

In this study, we addressed speech dereverberation using an

unsupervised single channel approach that utilizes a speech

prior, but makes only weak assumptions on the properties

of reverberation. The assumptions that we make, or that

are built in our method, are that a long temporal context is

required, reverberation has a convolutive effect, and that we

can successfully decorrelate both the clean and reverberant
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speech, when represented as long-context supervectors of

short-term spectral observations, using a PCA transforma-

tion learned for clean speech. Our results demonstrate that

in the all reverberant cases, we achieve better performance

compared to the clean speech trained baseline. Furthermo-

re, we showed that our method can be coupled to CMLLR

adaptation with cumulative benefits.

Tests with different parameter settings on the proposed

system demonstrate that it is essential to use long context in

the supervector representation. In this paper, we demonstra-

te this by comparing a temporal context of only one frame to

the proposed 20 frame context, but our earlier development

tests showed that a 20 frame context was better than e.g. a 10

frame context. Showing this and related results was omitted

for compactness, and as they are not compatible with the final

version of the approach presented in this paper. Our results

in comparing the systems with and without the Wiener filter

demonstrate, first of all, that spectra originating directly from

a low dimensional PCA representation are overly smooth to

represent speech accurately. Secondly, comparing the high di-

mensional PCA to the Wiener filtered low dimensional PCA,

we notice that the Wiener filter is better at representing short-

term variation than utilizing the high dimensional PCA.

In the present study, we chose to use full batch processing

over utterance-wise from the challenge alternatives, because

of the need to have a sufficient amount of data available for

robust estimation of the distribution of the reverberant speech

features. In the development stage, we conducted experiments

with a version using a posterior model that is accumulated ut-

terance by utterance, and the full batch version was only mar-

ginally better. Systematic investigations on the need of adap-

tation data are left, however, for future studies.

Regarding the computational cost of the proposed met-

hod, it should be straightforward to implement it more ef-

ficiently. The first step would be to remove unnecessary com-

putation that was left in the method for ease of implemen-

tation (see Sect. 3.3). Secondly, the computation could be re-

duced through histogram equalization using a more coarse di-

stribution sampling [7]. After collecting sufficient data for the

estimation of the reverberant posterior distribution in the cor-

responding condition, the method can applied with a low la-

tency of only one spectral frame, if the supervector context is

taken to represent the past mel-spectra. The question of whet-

her full batch data is actually necessary is out of the scope of

this study.

The present study used a standard PCA to decorrelate the

spectral supervectors. During the development of the method,

we also conducted experiments using more sophisticated ap-

proaches, such as the stacked denoising auto-encoder (SDAE)

[15], with which we generated bottleneck features of similar

dimensionality as the PCA used in this work. With SDAE, we

obtained better speech reconstruction accuracy, but coupling

Table 2. Evaluation test word error rates on reverberant conditions. The results are shown for the baseline system without

(Baseline) and with (Baseline-ada) CMLLR adaptation, and similarly for two versions of the proposed method, without (DM)

and with CMLLR-adaptation (DM-ada). The best results are bolded.

SimData RealData

Room 1 Room 2 Room 3 Ave. Room 1 Ave.

Near Far Near Far Near Far – Near Far –

Baseline 18.32 25.77 42.71 82.71 53.56 87.97 51.82 90.07 88.01 89.04

Baseline-ada 14.86 19.10 24.59 64.48 34.16 79.34 39.40 82.88 80.49 81.68

DM 18.20 23.01 27.99 53.53 37.47 67.14 37.87 73.14 71.37 72.25

DM-ada 14.74 18.50 20.89 39.59 26.74 51.80 28.70 64.32 60.16 62.24

Table 3. Development test word error rate results on reverberant test conditions, all without CMLLR adaptation. Results are

shown for the baseline recognizer (Baseline), the three parameter settings of the proposed method — the version used for the

final results utilizing a context of T = 20 time frames (DM), the version with no time context (T = 1), and the version using

T = 20 time frames and no dimensionality reduction (full dim) — as well as the variant without Wiener filter (no filter). The

best results are bolded.
SimData RealData

Room 1 Room 2 Room 3 Ave. Room 1 Ave.

Near Far Near Far Near Far – Near Far –

Baseline 15.29 25.29 43.90 85.80 51.95 88.90 51.81 88.71 88.31 88.51

DM (T = 20) 14.75 21.95 28.44 56.15 34.52 63.95 36.60 62.69 64.46 63.57

T = 1 16.10 24.93 30.88 74.14 39.94 79.23 44.17 70.99 71.09 71.03

full dim 15.46 23.13 29.48 62.53 35.44 67.68 38.92 66.56 68.97 67.75

no filter 32.30 42.65 53.76 78.75 61.72 85.93 59.15 79.23 80.45 79.83
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SDAE to the distribution mapping did not perform as well

as the simpler PCA. Non-linear independent component ana-

lysis was also tried out in earlier development stages. One

of the reasons for the superior performance of PCA might be

that we have learned mappings only from clean speech. Using

data from the distribution of reverberant speech in learning

the mapping is certainly possible, but comes with an increa-

se in computational cost. However, using more sophisticated

decorrelation methods is certainly among our future interests.
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