
USE OF MULTIPLE FRONT-ENDS AND I-VECTOR-BASED SPEAKER ADAPTATION FOR
ROBUST SPEECH RECOGNITION

Md Jahangir Alam1,2, Vishwa Gupta1, Patrick Kenny1, Pierre Dumouchel2

1Centre de recherche informatique de Montréal, Montréal, Canada

2École de technologie supérieure, Montréal, Canada

ABSTRACT

Although state-of-the-art speech recognition systems
perform well in controlled environments they work poorly
in realistic acoustical conditions in reverberant
environments. Here, we use multiple front-ends
(conventional mel-filterbank, multitaper spectrum
estimation-based mel filterbank, robust mel and
compressive gammachirp filterbank, iterative
deconvolution-based dereverberated mel-filterbank, and
maximum likelihood inverse filtering-based dereverberated
mel-frequency cepstral coefficients) - based recognition
systems with multi-condition training data and combined
their results using ROVER (Recognizer Output Voting
Error Reduction). For 2- and 8- channel tasks, to get benefit
from more than one channel, we also utilize ROVER
instead of the multi-microphone signal processing method.
As in previous work we also apply i-vector -based speaker
adaptation which was found effective. Speech recognition
experiments are conducted on the REVERB challenge 2014
corpora using the Kaldi recognizer. For the 2-channel task
(using full batch processing) we obtained an average word
error rate (WER) of 9.0% and 23.4% on the SimData and
RealData respectively. Whereas for 8-channel task on the
SimData and RealData the average WERs found were 8.9%
and 21.7%, respectively.

Index Terms— Speech recognition, multitaper,
filterbank features, dereverberation, i-vectors, DNN.

1. INTRODUCTION
Automatic speech recognition is a key component in hands-
free man-machine interaction. State-of-the-art speech
recognition systems are based on statistical acoustic models
which are trained in a clean and controlled environment. In
many applications, speech recognition systems are deployed
in reverberant environments. The speech signal can be
highly distorted by this room reverberation. Consequently,
the performance of speech recognition systems trained on
clean data degrades severely in reverberant environments
because of the mismatch between the training and the test
conditions. Reverberation is a phenomenon where delayed

and attenuated versions of a signal are added to itself. and
typically modeled as a linear filtering of a signal in time
domain. Compensation of acoustic reverberant environment
is usually done by dereverberation, which can be obtained
by inverse filtering the impulse response of the room [17,
18]. Dereverberation can be single channel or multi-
channel. The most efficient way of compensating for
environmental mismatch due to acoustic reverberation is to
train acoustic models using multi-condition/multi-style
training data.
For the REVERB challenge we use multi-condition training
data for mismatch compensation due to different room
impulse responses (RIR) and different channel conditions.
We develop seven recognition systems using the Kaldi
toolkit based on the following seven front-ends:
conventional mel-filterbank (MFB) with log compression,
multitaper spectrum estimator-based mel-filterbank
(MMFB) with logarithmic nonlinearity (MMFBl), MMFB
with power-law nonlinearity (MMFBp), robust compressive
gammachirp filterbank (RCGFB), robust mel filterbank
(RMFB), iterative deconvolution-based dereverberated
MFB (ITD-MFB), and maximum likelihood inverse
filtering-based dereverberated (MLIFD) cepstral
coefficients. We combine the results of all seven systems to
get lowest possible word error rates (WER).
In [2], it was shown that an i-vector characterizing a
speaker can be used as an additional input to the feature
layer of the DNN (deep neural nets) in order to adapt the
DNN to the speaker. This adaptation was found to be
effective and helped to boost the performance by
approximately 2.0%. In this work we also incorporate this
adaptation method.
For the 2-channel and 8-channel we do not apply any
multi-microphone signal processing algorithms for doing
the dereverberation rather we combine the results from all 2
and all 8 channels, respectively, to get the best possible
results. This is found effective and helps to reduce the WER
by 1~3%.

2. FRONT-ENDS

2.1. Multitaper Filterbank Features

REVERB Workshop 2014

1

A windowed direct spectrum estimator is the most often
used power spectrum estimation method in speech
processing applications. The windowed periodogram
estimate can be expressed as:

221

0

ˆ () ,
jfN i

N
d

j
S f w j s j e

 (1)

where 0,1, , 1f K denotes the discrete frequency
index, N is the frame length, s(m,j) is the time domain
speech signal and w(j) denotes the time domain window
function, also known as the taper. The taper, such as the
Hamming window, is usually symmetric and decreases
towards the frame boundaries.
Windowing reduces the bias (the bias of an spectrum
estimator ̂ is defined as the expected difference between
the estimated value and the true value of the spectrum

being estimated and is defined as ˆ ˆbias E),

but it does not reduce the variance of the spectral estimate
[11-12] and therefore, the variance of the cepstral/filterbank
features computed from this estimated spectrum remains
large. One way to reduce the variance is to replace the
windowed periodogram estimate by a so-called multi-taper
spectrum estimate [11-12]. It is given by

221

1 0

ˆ () ,
i jfM N

N
MT p

p j
S f p w j s j e

 (2)

where N is the frame length and pw is the pth data taper

(1, 2,...,p M) used for the spectral estimate ˆ ()MTS , also
known as the pth eigenspectrum. Here, M denotes the
number of tapers and p is the weight of the pth taper.

The tapers pw j are typically chosen to be orthonormal
so that, for all p and q,

1,
0, otherwise.p q pqj

p q
w j w j

The multitaper spectrum estimate is therefore obtained as
the weighted average of M individual spectra. A multi-taper
spectrum estimator is somewhat similar to averaging the
spectra from a variety of conventional tapers such as
Hamming and Hann tapers, but in this case, there will be
strong redundancy as the different tapers are highly
correlated (they have a common time-domain shape).
Unlike conventional tapers, the M orthonormal tapers used
in a multi-taper spectrum estimator provide M statistically
independent (hence uncorrelated) estimates of the
underlying spectrum. The weighted average of
the M individual spectral estimates ˆ

MTS f then has
smaller variance than the single-taper spectrum estimates

 ˆ
dS f by a factor that approaches 1 M , i.e.,

 1ˆ ˆvar varMT dS f S f
M

 [11]. Multitaper Mel

filterbank (MMFB) features are then computed from a
multiple windowed (e.g., Thomson) spectrum estimate
instead of the Hamming windowed periodogram estimate as
used in the conventional Mel filterbank (MFB) / cepstral
features. In this work two variants of MMFB are used:
MMFBl: MMFB features with logarithmic nonlinearity
MMFBp: MMFB features with power function nonlinearity
Both of the MMFB features were normalized using short-
time mean and scale normalization (STMSN) method [10]
with a sliding window of 1.5 seconds duration. Our
baseline system uses conventional MFB features extracted
using the Kaldi toolkit [4].

2.2. RCGFB and RMFB Features
Robust compressive gammachirp filterbank (RCGFB) and
robust mel filterbank (RMFB) features were computed
following a similar framework to the robust compressive
gammachirp filterbank cepstral coefficients (RCGCC)
features proposed in [9]. Fig. 1 presents the block diagram
for the RCGFB and RMFB feature extractors that
incorporate a sigmoid shape suppression rule based on
subband a posteriori signal-to-noise ratios (SNRs) in order
to enhance the auditory spectrum.

Fig. 1. Robust compressive gammachirp filterbank (RCGFB) and
robust mel filterbank (RMFB) features extraction process.

RCGFB utilizes a power function nonlinearity with a
coefficient of 0.07 to approximate the loudness nonlinearity
of human perception whereas RMFB uses a logarithmic
nonlinearity. For feature normalization a short-term mean
and scale normalization (STMSN) technique is used with a
sliding window of 1.5 seconds.
Under mismatched conditions, this helps to remove the
difference of log spectrum between the training and test

2

environments by adjusting the short-term mean and scale
[10].

2.3. Iterative Deconvolution (ITD)-based features
The iterative deconvolution (ITD)-based dereverberated
Mel filterbank features extraction method is presented in
figure 2. It was proposed in [19]. A Gammatone filterbank
integrated auditory spectrum is computed for each
windowed frame. ITD is then applied to each subband in
the gammatone frequency domain. ITD, an iterative least
square approach that minimizes the errors [19]:

2

, , ,k
i m

e S i k X m k H i m k

 , (3)

initialized by nonnegative matrix factorization (NMF), is
used to estimate the clean signal (,)X m k and room impulse

response ,H m k from the reverberated signal

 ,S m k where k is the subband index and m is the frame
index. After reconstructing the dereverberated signal 23-
dimensional mel filterbank features are then computed
using the Kaldi toolkit.

Fig. 2. Iterative Deconvolution (ITD)-based dereverberated MFB
(ITD-MFB) features extraction.

2.4. Maximum likelihood inverse filtering-based
dereverberated (MLIFD) features

Maximum likelihood inverse filtering-based
dereverberation of a reverberated signal in the cepstral
domain, proposed in [18], is shown in fig. 3. The purpose
of cepstral post-filtering is to partially decorrelate the
features. If P 1() 1 1P z pz is an IIR (inverse

impulse response) dereverberation filter of M taps long then
the dereverberated cepstral features dc m can be given as:

1

1

M
d d

k
c m c m p k c m k

 , (4)

where m is the frame index, c m is the cepstral features of
m-th frame of a reverberated speech signal.

Parameters that best describe P can be obtained by finding
the most likely Gaussian Mixture Models (GMM) state for
all the frames [18].

Fig. 3. Maximum likelihood inverse filtering-based
dereverberated (MLIFD) MFCCs features extraction.

3. EXTRACTION OF I-VECTORS
The idea of i-vector extraction is based on a simplified
version of Joint Factor Analysis (JFA) [3, 6]. Contrary to
JFA, different sessions of the same speaker are considered
to be produced by different speakers. Rather than making a
distinction between the speaker and channel effects the total
variability space in the i-vector extraction method
simultaneously captures the speaker and channel
variabilities [3, 6]. Given a C component GMM-UBM
model with , , ,c c c cw 1, 2,...,c C and an
utterance having a sequence of T feature frames
 1 2, ,..., Ty y y the zeroth and centered first order Baum-
Welch statistics on the UBM are computed as:

1

| ,
T

c k
k

N p c y

1

| ,
T

c k k c
k

F p c y y

 . (5)

The generative model for the i-vector can be expressed as:
 cM T , (6)
where M is a supervector constructed by appending together
the first order statistics for each mixture component c, the
columns of the low rank total variability matrix T span the
subspace where most of the speaker specific information
lives (along with channel effects). For each speech
recording r, an i-vector ri is obtained as the MAP estimate
of . Fig. 4 presents a block diagram showing various
steps of the i-vector extraction process from the MFCC
features. The Features used for i-vector extraction are the
60-dimensional Multitaper MFCCs (MMFCCs) including
the 0th cepstral coefficients, delta and double delta features.
512-component diagonal UBM was trained on all the
training data. For training the i-vector extractor (i.e., the
total variability matrix T) we have used all the multi-
condition training data generated using the scripts provided

3

by the REVERB Challenge 2014 organizer. For this task
we have generated both speaker-specific and utterance-
specific i-vectors

Fig. 4. An i-vector extractor.

4. TRAINING AND DECODING ALGORITHMS
To get best possible results we ran multiple recognition
experiments with different features. We then combined the
decoded transcripts using ROVER, a recognition system
combination software available from NIST. All the training
and decoding was done using the Kaldi toolkit. Every
recognizer used DNN-HMM hybrid architecture. For all the
DNN's that use TRAP (TempoRAl Pattern) features [1]
computed from filterbank features, we also input a 100-
dimensional i-vector [2] derived from all the utterances of
the speaker. This i-vector characterizing a speaker [3, 22]
helps the DNN to adapt to the speaker characteristics.
For decoding, we used a pruned trigram LM with 709K
trigrams generated from Wall Street Journal language
model (LM) training data. The resulting lattices were
rescored using a larger trigram LM (with 3.15 million
trigrams) generated from the Wall Street LM training data.
We used a vocabulary size of 20K words.

4.1. Training data
For training the DNN models, we use the multi-condition
training data generated from the clean training data using
the scripts provided by the organizer [13, 14]. The Total
number of recordings in training data is 70155; 594
utterances are held out in order to provide a cross validation
set for DNN training. The same training and validation sets
are used for training the DNN for different feature
parameters derived from the raw signal. This training data
corresponds to training with 20K vocabulary recognition
task [13-14].

4.2. Training with MFCC features

The maximum likelihood inverse filtering-based
dereverberated MFCC features (i.e., MLIFD features) are
used to train a DNN-HMM hybrid system. In order to train
the DNN-HMM hybrid system, we first train a GMM-
HMM system with 3435 tied triphone states and 40K
Gaussians. The training process uses the Kaldi toolkit [4]
and the training process is similar to that outlined in [5]. In
short, the GMM-HMM is trained on features obtained by
first normalizing MFCCs to zero mean per speaker, then
splicing together 7 frames of 13-dimensional MFCCs and
reducing them to 40 dimensions through LDA, followed by
a semi-tied covariance (STC) transform. The resulting
features are then transformed through an FMLLR
transform. The LDA+STC+FMLLR transformed MFCC
features are then used to train the GMM-HMM with 3435
tied triphone states and 40K Gaussians. The deep neural
net (DNN) is also trained on the LDA+STC+FMLLR
transformed MFCC features. These features are globally
normalized to have zero mean and unit variance. The input
to the neural net is 11 frames (or 440 feature values). The
DNN is initialized with stacked RBMs. The resulting DNN
(with 5 hidden layers, 1024 neurons in each hidden layer,
3435 outputs in the output layer) goes through one iteration
of sequence training with MPE criteria. The training data
is re-aligned with the new DNN and we go through two
more iterations of sequence training with the MPE criteria.
The resulting DNN-HMM hybrid system is then used for
recognition.

4.3. Training with filterbank features
For training DNN-HMM models from the baseline (i.e.,
conventional mel filterbank (MFB)) features, from the
MMFBl (multi-taper Mel-filterbank with logarithmic
nonlinearity) and MMFBp (multi-taper Mel-filterbank with
power-law nonlinearity), from the RCGFB (robust
compressive gammachirp filterbank) and RMFB (robust
Mel-filterbank) features, and from the ITD-based
dereverberated MFB (ITD-MFB) features, we generate 23-
dimensional filterbank features per frame for each of the
above mentioned front-ends. The process for generating the
DNN from these filterbank features is similar to that
outlined in [2] for DNN-HMM system with speaker
adaptation. From the filterbank features, we compute the
TRAP features [1] as follows: we first normalize the 23-
dimensional filterbank features to zero mean per speaker.
Then 31 frames of these 23-dimensional filterbank features
(15 frames on each side of current frame) are spliced
together to form a 713-dimensional feature vector. This
713-dimensional feature vector is transformed using a
hamming window (to emphasize the center), passed
through a discrete cosine transform and the dimensionality
is reduced to 368. This 368-dimensional feature vector is
globally normalized to have zero mean and unit variance.
This normalized 368-dimensional feature vector together

4

with a 100 dimensional i-vector [6] (computed from the full
utterance) is then input to the 7-layer DNN as shown in
Fig. 5. The i-vector was length normalized by dividing the
i-vector by the square root of the sum of the squares of its
elements. Note that the un-normalized i-vectors are
approximately Gaussianized by length normalization [7].
The DNN has 5 hidden layers with 1024 neurons each and
the output softmax layer has around 3500 outputs. The i-
vector characterizing a speaker is used as an additional
input to the feature layer in order to adapt the DNN to the
speaker. The resulting DNN was then used to re-align the
training data. This was then followed with four iterations of
sequence training with the MMI criteria.
We generated DNNs with two different variants. In the first
variant, the i-vectors were computed from only the current
utterance. In the second variant, all the utterances in one
room per test condition corresponding to the same speaker
were used to compute the 100-dimensional length
normalized i-vector for this speaker.

Fig. 5. Architecture of 7-layer DNN used with TRAP and i-vector
features.

4.3. Decoding Algorithm
The decoding algorithm is slightly different depending on
whether we are doing utterance-based batch processing or
full batch processing. For the MLIFD (maximum
likelihood inverse filtering-based dereverberation) features
that use FMLLR transform, we only use full batch
processing, since we need to compute the FMLLR
transform for the speaker from all the utterances of the
speaker in the room. Computing FMLLR transform from a
single short utterance gives poor results (we need over 20
secs of audio to estimate reasonable FMLLR transforms).
For full batch processing, we first diarize all the utterances
in a room per test condition using a modified version of the
multi-stage segmentation and clustering system [8]. The

modification is that each utterance corresponds to one
speaker. There is no sub-segmentation of the utterance.
Fiterbank features in each speaker cluster are then
normalized to zero. We also compute one 100-dimensional
length normalized i-vector per speaker [6].
For utterance based batch processing, each utterance was
labeled as a different speaker, and an i-vector was
computed per utterance. In this case, the filterbank features
are normalized per utterance and the 100 dimensional
length normalized i-vector is computed per utterance.

5. EXPERIMENTS AND RESULTS
Front-ends or feature extractors used for this task have
already been presented in section 2. Kaldi recognizer was
used for training and recognition task. Experiments were
carried out on the REVERB challenge 2014 corpora [13-
16] and results were reported on the all evaluation
conditions for the 1-channel, 2-channel, and 8-channel
tasks. Results reported here are only on the Evaluation
corpus. Development corpus was used for tuning the system
parameters.

5.1. Results with utterance-based batch processing
For utterance based batch processing, we decoded each
utterance using six different feature sets (baseline, MMFBl,
MMFBp, RMFB, RCGFB, and ITD-MFB then combined
the six different results using ROVER (Recognizer Output
Voting Error Reduction). We did not use MLIFD features
as they provided poor results. In ROVER, we ignored the
timing information and just used the voting mechanism. So
for single channel results, we combine 6 different results
using ROVER. Table 1 (a) shows the results for each
feature and each room. The last row shows the results after
combining results from all 6 features using ROVER. After
ROVER, the average SimData WER is 10.0% and average
RealData WER is 27.1%.
For the 2-channel utterance-based recognition, the only
difference from 1-channel processing is that for each room
we combine the results for the two channels using ROVER.
Here, the individual feature parameter WER is not going to
be much different from that for 1-channel case, since
ROVER needs at least 3 inputs to reduce the WER
significantly. However, when we combine all the feature
parameter outputs with ROVER (last row), the combination
is for 12 different recognizers (2 channels x 6 features).
The order of combination in ROVER is the order of the
rows in Table 1 (b). As we can see from this table, The
average WER for SimData has reduced to 9.6%, and for
RealData the WER has reduced to 25.6%.
In the 8-channel utterance based recognition, for each
feature parameter, we combine the results from all 8
channels using ROVER. The ordering of this combination
is from channel 1 to channel 8. We did not try varying this
order. Each row shows this combined result. Combining 8-

5

channels with ROVER reduces the WER significantly. For
combining recognition results from all the features (last
row), there are 48 recognition outputs (8 channels x 6
features) to combine. The recognition outputs are combined
in the same order as the rows in Table 1 (c). That is,
channels 1 through 8 of RCGFB are combined first,
followed by channels 1-8 of MMFBl and so on. ROVER is
somewhat sensitive to the order of combination. So we
combine the best systems first. As we can see from the
table, The average WER for SimData has reduced to 9.1%,
and for RealData the WER has reduced to 24.0%.

5.2. Results with full batch processing
There are a few differences between utterance-based batch
processing and full batch processing. In utterance-based
batch processing, we normalize the features of each
utterance to zero mean, and compute a 100-dimensional i-
vector from this utterance. In full batch processing, we
normalize the features of each speaker in a room to zero
mean, and compute a 100-dimensional i-vector from this
speaker in the room. In order to assign utterances in a room
to speakers, we carry out speaker diarization using a
modified version of the multi-stage segmentation and
clustering system [8] as described before.
In utterance based batch processing, we computed i-vectors
separately for each utterance from three different features,
and the corresponding i-vector was used when recognizing
using that feature. In full batch processing, we computed i-
vector for each speaker using the multitaper MFCCs
features, and used these i-vectors during
training/recognition using other features. This strategy did
not work well. Only the WER for MMFBl features went
down while the results for other features were worse than
utterance-based processing. Therefore, we used the results
from utterance based batch processing for the other features
(note MLIFD does not use i-vectors).
Another difference between utterance-based versus full
batch processing is that we are able to decode with MLIFD
features in full batch processing. The MLIFD features for
an utterance are transformed using LDA+STC+FMLLR
before input to the neural net. FMLLR transform per
utterance resulted in significant increase in WER and
therefore MLIFD feature was not used in utterance-based
batch processing. In full batch processing, the FMLLR is
computed from all the utterances of a speaker in the room.
In this scenario, MLIFD features gave very good results.
The single channel results are shown in Table 2 (a). In the
last column of Table 2 (a), we are combining results from
seven different features using ROVER in the same order as
the rows in this table. Overall, full batch processing
reduced WER from 10.0% to 9.3% as compared to
utterance based batch processing.
In the 2-channel full batch processing, the only difference
from 1-channel processing is that for each room we

combine the results for the two channels using ROVER.
Here, the individual feature parameter WER is not going to
be much different from that for 1-channel case, since
ROVER needs at least 3 inputs to reduce the WER
significantly. However, when we combine all the feature
parameter outputs with ROVER, the combination is for 14
different recognizers (2 channels x 7 features). The results
are shown in the last row of Table 2 (b). As we can see
from the table, The average WER for SimData has reduced
from 9.6% to 9.0%, and for RealData WER reduced from
25.6% to 23.4% when compared with 2-channel utterance
based processing.
For the 8-channel full batch processing, for each feature
parameter, we combine the results from all 8 channels
using ROVER. The ordering of this combination is from
channel 1 to channel 8. We did not try varying this order.
Each row in Table 2 (c) presents this combined result.
Combining 8-channels with ROVER reduces the WER
significantly. For combining with ROVER recognition
results from all the features (last row in Table 2 (c)), there
are 56 recognition outputs (8 channels x 7 features) to
combine. However, for some reason, we can only combine a
maximum of 50 recognition outputs in ROVER. The
recognition outputs are combined in the same sequence as
the rows in Table 2 (c). That is, channels 1 through 8 of
MLIFD are combined first, followed by channels 1-8 of
RCGFB and so on. So only the first two channels of the
Baseline features are combined with ROVER. As we can
see, compared to 2 channel full batch processing, the WER
for SimData has reduced from 9.0% to 8.9%, and for
RealData WER has reduced from 23.4% to 21.7%.

6. CONCLUSION
In this work, to get the best possible recognition results
(i.e., lowest WER), we decided to use multiple front-ends -
based recognition systems and then combined the
recognition results using ROVER. Front-ends chosen for
the REVERB challenge task were: convention MFB,
MMFB (with log and power-law nonlinearity), RCGFB,
RMFB, ITD-MFB, and MLIFD features. We also applied i-
vector -based speaker adaptation as it was found to boost
the performance by approximately 2% [2]. In the case of 2-
and 8- channel tasks, to get benefited from more than one
channel data, we also exploited ROVER instead of any
multi-microphone signal processing method. Compared to
the baseline all other front-ends performed better in terms
of WER both in SimData (except MMFB with power
function nonlinearity) and RealData. The best results were
obtained with the full batch processing and with 8-channel
task. For 8-channel task we obtained an average WER of
8.9% and 21.7% on the SimData and RealData,
respectively.
Our future work is to try some multi-channel
dereverberation algorithms and see their the recognition

6

performances both in clean- and multi-condition training
mode.

7. REFERENCES

[1] F. Grezl, “TRAP-based Probabilistic Features for Automatic
Speech Recognition”, Doctoral Thesis, dept. Computer Graphics
& Multimedia, Brno Univ of Technology, Brno 2007.
[2] V. Gupta, P.Kenny, P. Ouellet, T. Stafylakis, “I-Vector-based
speaker adaptation of deep neural networks for French broadcast
audio transcription”, Proc. ICASSP (to appear), 2014.
[3] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 19, no. 4, pp. 788–798, May
2011.
[4] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hanneman, P. Motlicek, Y. Qian, P. Schwarz, J.
Silovsky, G. Stemmer and K. Vesely, “The Kaldi Speech
Recognition Toolkit”, Proc. ASRU, 2011.
[5] K. Vesel´y, A. Ghosal, L. Burget, D. Povey, “Sequence
discriminative training of deep neural networks”, Proc.
Interspeech 2013, pp. 2345–2349.
[6] P. Kenny, “A small footprint i-vector extractor”, Proc. Odyssey
2012, Singapore.
[7] D. Garcia-Romero, and C. Y. Espy-Wilson, “Analysis of
ivector length normalization in speaker recognition systems”,
Proc. Interspeech-2011.
[8] V. Gupta, G. Boulianne, P. Kenny, P. Ouellet, P. Dumouchel,
“Speaker Diarization of French Broadcast News”, Proc. ICASSP,
pp. 4365–4368, 2008.
[9] M. J. Alam, P. Kenny, D. O'Shaughnessy, "Robust Feature
Extraction for Speech Recognition by Enhancing Auditory
Spectrum," Proc. INTERSPEECH, September 2012.
[10] Alam, J., Ouellet, P., Kenny, P., O’Shaughnessy, D.,
“Comparative Evaluation of Feature Normalization Techniques
for Speaker Verification,” Proc NOLISP, LNAI 7015, pp. 246-
253, Las Palmas, Spain, November 2011.
[11] Md. J. Alam, T. Kinnunen, P. Kenny, P. Ouellet, D.
O'Shaughnessy, “Multitaper MFCC and PLP Features for Speaker
Verification Using i-Vectors”, Speech Communication, 55(2):
237--251, February 2013.

[12] Md. J. Alam, Kenny, P., and O'Shaughnessy, D., “Low-
variance Multitaper Mel-Frequency Cepstral Coefficient Features
for Speech and Speaker Recognition Systems,” Springer Cognitive
Computation Journal, December 2012.
[13] Kinoshita, K.; Delcroix, M.; Yoshioka, T.; Nakatani, T.;
Habets, E.; Haeb-Umbach, R.; Leutnant, V.; Sehr, A.;
Kellermann, W.; Maas, R.; Gannot, S.; Raj, B., "The REVERB
Challenge: A Common Evaluation Framework for
Dereverberation and Recognition of Reverberant Speech,"
Proceedings of the WASPAA, 2013.
[14] Robinson, T.; Fransen, J.; Pye, D.; Foote, J.; Renals, S.,
"WSJCAMO: a British English speech corpus for large vocabulary
continuous speech recognition," Proc. ICASSP, pp. 81-84, 1995.
[15] Lincoln, M.; McCowan, I.; Vepa, J.; Maganti, H.K., "The
multi-channel Wall Street Journal audio visual corpus (MC-WSJ-
AV): specification and initial experiments," Proc. ASRU, pp. 357-
362, 2005.
[16] Paul, Douglas B.; Baker, Janet M., "The design for the Wall
Street Journal-based CSR corpus," Proc. HLT, pp. 357-362, 1992.
[17] P. A. Naylor, N. D. Gaubitch, Speech Dereverberation,
Signals and Communication Technology series, Springer; 2010
edition, July 28, 2010.
[18] K. Kumar and R. M. Stern, "Maximum-likelihood-based
cepstral inverse filtering for blind speech dereverberation," Proc.
ICASSP, March 2010, Dallas, Texas.
[19] K. Kumar, B. Raj, R. Singh, and R. M. Stern, An iterative
least-squares technique for dereverberation, Proc. ICASSP, May
2011, Prague, Czech Republic.
[20] K. Kumar, and R. M. Stern, “Environment-invariant
compensation for reverberation using linear post-filtering for
minimum distortion,” Proc. ICASSP, April 2008, Las Vegas,
Nevada.
[21] M. J. Alam, P. Kenny, V. Gupta, P. Dumouchel, D.
O'Shaughnessy, "Comparative Evaluation of Several Robust
Feature Extractor for Continuous Speech Recognition," submitted
to ICASSP, 2014.
[22] G. Saon, H. Soltau, D. Nahamoo and M. Picheny, "Speaker
Adaptation of Neural Network Acoustic Models using I-vectors,"
Proc. ASRU, 2013.

Table 1 WER obtained using utterance-based batch processing for (a) 1channel (b) 2 channel, and (c) 8 channel tasks.

(a) SimData RealData
 Room 1 Room 2 Room 3 Avg. Room 1 Avg.
 Near Far Near Far Near Far Near Far

RCGFB 8.2 9.4 9.8 15 10.8 16.6 11.6 30.4 31.5 30.9
MMFBl 8.3 9.3 9.9 15.7 10.6 17.6 11.9 31.6 30.9 31.2
MMFBp 8.5 9.8 11.1 17.2 11.8 19.2 12.9 30.2 31.9 31
RMFB 8.4 9.1 9.7 15 10.8 17 11.6 31.8 31.3 31.5

ITD-MFB 7.6 8.8 10.4 14.5 9.8 16 11.1 31.9 33 32.4
Baseline 7.6 8.9 11.5 18.1 11.2 18.8 12.6 41 38 39.4

ROVER-all 7.1 8.1 8.9 12.9 9.2 13.8 10 27.2 26.9 27.1

(b) SimData RealData
 Room 1 Room 2 Room 3 Avg. Room 1 Avg.
 Near Far Near Far Near Far Near Far

RCGFB 8.4 9.5 10.1 15.2 11.1 17.1 11.9 31.4 32.4 31.9
MMFBl 8.5 9.3 10.1 15.9 11.3 17.9 12.2 32.8 31.2 32

7

MMFBp 8.9 10 11 18.1 12.5 20.3 13.5 31.8 32.9 32.3
RMFB 8.4 9.1 10 15.4 10.8 17.3 11.9 32.6 31 31.8

ITD-MFB 7.8 9 10.5 15.1 10.4 16.1 11.5 33 32.6 32.8
Baseline 7.8 9.2 11.6 18.3 11.7 19.3 13 42.4 38.5 40.4

ROVER-all 7 7.8 8.4 12.1 9 13.2 9.6 25.5 25.7 25.6

(c) SimData RealData
 Room 1 Room 2 Room 3 Avg. Room 1 Avg.
 Near Far Near Far Near Far Near Far

RCGFB 8.1 9 9.1 14 10.3 15.3 11 27.9 28.7 28.3
MMFBl 8.1 8.7 9.3 14.3 10.1 15.8 11.1 28.4 27 27.7
MMFBp 8.4 9.2 10.2 16.1 11.4 18 12.2 27.5 28.7 28.1
RMFB 8.1 8.7 9.1 13.6 10 14.8 10.7 29.4 27.7 28.5

ITD-MFB 7.2 8.1 9.7 13.1 9.5 14.8 10.4 29.8 30.1 30
Baseline 7.6 8.4 10.6 17 10.6 17.9 12 37.8 36.8 37.3

ROVER-all 6.7 7.3 8.3 11.6 8.6 12.6 9.1 23.8 24.1 24

Table 2 WER obtained using full batch processing for (a) 1channel (b) 2 channel, and (c) 8 channel tasks.

(a) SimData RealData
 Room 1 Room 2 Room 3 Avg. Room 1 Avg.
 Near Far Near Far Near Far Near Far

MLIFD 8 8.8 10.9 15.9 11.1 17.6 12 27 28 27.5
RCGFB 8.2 9.4 9.8 15 10.8 16.6 11.6 30.4 31.5 30.9
MMFBl 8.7 9.9 10.3 17.2 11.3 18.7 12.6 28.7 28.7 28.6
MMFBp 8.5 9.8 11.1 17.2 11.8 19.2 12.9 30.2 31.9 31
RMFB 8.4 9.1 9.7 15 10.8 17 11.6 31.8 31.3 31.5

ITD-MFB 7.6 8.8 10.4 14.5 9.8 16 11.1 31.9 33 32.4
Baseline 7.6 8.9 11.5 18.1 11.2 18.8 12.6 41 38 39.5

ROVER-all 6.7 7.3 8.4 11.8 8.7 12.7 9.3 23.8 24.8 24.3

(b) SimData RealData
 Room 1 Room 2 Room 3 Avg. Room 1 Avg.
 Near Far Near Far Near Far Near Far

MLIFD 8.2 9 11.1 16.5 11.5 18.4 12.5 27.3 27.5 27.4
RCGFB 8.4 9.5 10.1 15.2 11.1 17.1 11.9 31.4 32.4 31.9
MMFCC 8.8 10.4 10.5 17.9 11.8 19.5 13.2 29.5 28.8 29.1

MMFCC_I 8.9 10 11 18.1 12.5 20.3 13.5 31.8 32.9 32.3
RMFB 8.4 9.1 10 15.4 10.8 17.3 11.9 32.6 31 31.8

ITD-MFB 7.8 9 10.5 15.1 10.4 16.1 11.5 33 32.6 31
Baseline 7.8 9.2 11.6 18.3 11.7 19.3 13 42.4 33 40.4

ROVER-all 6.6 7.4 8.1 11.2 8.5 12.2 9 22.6 24.2 23.4

(c) SimData RealData
 Room 1 Room 2 Room 3 Avg. Room 1 Avg.
 Near Far Near Far Near Far Near Far

MLIFD 7.5 8.3 10 14.1 10.4 15.9 11 23.8 24.4 24.1
RCGFB 8.1 9 9.1 14 10.3 15.3 11 27.9 28.7 28.3
MMFBl 8.5 9.5 9.5 16.1 10.8 17.4 12 26 26.2 26.1
MMFBp 8.4 9.2 10.2 16.1 11.4 18 12.2 27.5 28.7 28.1
RMFB 8.1 8.7 9.1 13.6 10 14.8 10.7 29.4 27.7 28.5

ITD-MFB 7.2 8.1 9.7 13.1 9.5 14.8 10.4 29.8 30.1 30
Baseline 7.6 8.4 10.6 17 10.6 17.9 12 37.8 36.8 37.3

ROVER-all 6.7 7.3 8 11.1 8.1 12.1 8.9 21.4 22 21.7

8

