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ABSTRACT 
 
Although state-of-the-art speech recognition systems 
perform well in controlled environments they work poorly 
in realistic acoustical conditions in reverberant 
environments. Here, we use multiple front-ends 
(conventional mel-filterbank, multitaper spectrum 
estimation-based mel filterbank, robust mel and 
compressive gammachirp filterbank, iterative 
deconvolution-based dereverberated mel-filterbank, and 
maximum likelihood inverse filtering-based dereverberated 
mel-frequency cepstral coefficients) - based recognition 
systems with multi-condition training data and combined 
their results using ROVER (Recognizer Output Voting 
Error Reduction). For 2- and 8- channel tasks, to get benefit 
from more than one channel, we also utilize ROVER 
instead of the multi-microphone signal processing method. 
As in previous work we also apply i-vector -based speaker 
adaptation which was found effective. Speech recognition 
experiments are conducted on the REVERB challenge 2014 
corpora using the Kaldi recognizer. For the 2-channel task 
(using full batch processing) we obtained an average word 
error rate (WER) of 9.0% and 23.4% on the SimData and 
RealData respectively. Whereas for 8-channel task on the 
SimData and RealData the average WERs found were 8.9% 
and 21.7%, respectively. 
  

Index Terms— Speech recognition, multitaper, 
filterbank features, dereverberation, i-vectors, DNN. 
 

1. INTRODUCTION 
Automatic speech recognition is a key component in hands-
free man-machine interaction. State-of-the-art speech 
recognition systems are based on statistical acoustic models 
which are trained in a clean and controlled environment. In 
many applications, speech recognition systems are deployed 
in reverberant environments. The speech signal can be 
highly distorted by this room reverberation.  Consequently, 
the performance of speech recognition systems trained on 
clean data degrades severely in reverberant environments 
because of the mismatch between the training and the test 
conditions. Reverberation is a phenomenon where delayed 

and attenuated versions of a signal are added to itself. and 
typically modeled as a linear filtering of a signal in time 
domain. Compensation of acoustic reverberant environment 
is usually done by dereverberation, which can be obtained 
by inverse filtering the impulse response of the room [17, 
18]. Dereverberation can be single channel or multi-
channel. The most efficient way of compensating for 
environmental mismatch due to acoustic reverberation is to 
train acoustic models using multi-condition/multi-style 
training data. 
For the REVERB challenge we use multi-condition training 
data for mismatch compensation due to different room 
impulse responses (RIR) and different channel conditions.  
We develop seven recognition systems using the Kaldi 
toolkit based on the following seven front-ends: 
conventional mel-filterbank (MFB) with log compression, 
multitaper spectrum estimator-based mel-filterbank 
(MMFB) with logarithmic nonlinearity (MMFBl), MMFB 
with power-law nonlinearity (MMFBp), robust compressive 
gammachirp filterbank (RCGFB), robust mel filterbank 
(RMFB), iterative deconvolution-based dereverberated 
MFB (ITD-MFB), and maximum likelihood inverse 
filtering-based dereverberated (MLIFD) cepstral 
coefficients. We combine the results of all seven systems to 
get lowest possible word error rates (WER).  
In [2], it was shown that an i-vector characterizing a 
speaker can be used as an additional input to the feature 
layer of the DNN (deep neural nets) in order to adapt the 
DNN to the speaker. This adaptation was found to be 
effective and helped to boost the performance by 
approximately 2.0%. In this work we also incorporate this 
adaptation method.  
For the 2-channel and 8-channel we do not apply any 
multi-microphone signal processing algorithms for doing 
the dereverberation rather we combine the results from all 2 
and all 8 channels, respectively, to get the best possible 
results. This is found effective and helps to reduce the WER 
by 1~3%. 

2. FRONT-ENDS 
 
2.1. Multitaper Filterbank  Features 
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A windowed direct spectrum estimator is the most often 
used power spectrum estimation method in speech 
processing applications. The windowed periodogram 
estimate can be expressed as: 
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where  0,1, , 1f K   denotes the discrete frequency 
index, N is the frame length, s(m,j) is the time domain 
speech signal and w(j) denotes the time domain window 
function, also known as the taper. The taper, such as the 
Hamming window, is usually symmetric and decreases 
towards the frame boundaries. 
Windowing reduces the bias (the bias of an spectrum 
estimator ̂ is defined as the expected difference between 
the estimated value and the true value of the spectrum   

being estimated and is defined as    ˆ ˆbias E      ), 

but it does not reduce the variance of the spectral estimate 
[11-12] and therefore, the variance of the cepstral/filterbank 
features computed from this estimated spectrum remains 
large. One way to reduce the variance is to replace the 
windowed periodogram estimate by a so-called multi-taper 
spectrum estimate [11-12]. It is given by 
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where N is the frame length and pw is the pth data taper 

( 1, 2,...,p M ) used for the spectral estimate ˆ ( )MTS  , also 
known as the pth eigenspectrum. Here, M denotes the 
number of tapers and  p is the weight of the pth taper. 

The tapers  pw j  are typically chosen to be orthonormal 
so that, for all p and q,  
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The multitaper spectrum estimate is therefore obtained as 
the weighted average of M individual spectra. A multi-taper 
spectrum estimator is somewhat similar to averaging the 
spectra from a variety of conventional tapers such as 
Hamming and Hann tapers, but in this case, there will be 
strong redundancy as the different tapers are highly 
correlated (they have a common time-domain shape). 
Unlike conventional tapers, the M orthonormal tapers used 
in a multi-taper spectrum estimator provide M statistically 
independent (hence uncorrelated) estimates of the 
underlying spectrum. The weighted average of 
the M individual spectral estimates  ˆ

MTS f  then has 
smaller variance than the single-taper spectrum estimates 

 ˆ
dS f  by a factor that approaches 1 M , i.e., 

     1ˆ ˆvar varMT dS f S f
M

  [11]. Multitaper Mel 

filterbank (MMFB) features are then computed from a 
multiple windowed (e.g., Thomson) spectrum estimate 
instead of the Hamming windowed periodogram estimate as 
used in the conventional Mel filterbank (MFB) / cepstral 
features. In this work two variants of MMFB are used: 
MMFBl: MMFB features with logarithmic nonlinearity 
MMFBp: MMFB features with power function nonlinearity 
Both of the  MMFB features were normalized using short-
time mean and scale normalization (STMSN) method [10] 
with a sliding window of 1.5 seconds duration. Our 
baseline system uses conventional MFB features extracted 
using the Kaldi toolkit [4]. 
 
2.2. RCGFB and RMFB Features 
Robust compressive gammachirp filterbank (RCGFB) and 
robust mel filterbank (RMFB) features were computed 
following a similar  framework to the robust compressive 
gammachirp filterbank cepstral coefficients (RCGCC) 
features proposed in [9].  Fig. 1 presents the block diagram 
for the RCGFB and RMFB feature extractors that 
incorporate a sigmoid shape suppression rule based on 
subband a posteriori signal-to-noise ratios (SNRs) in order 
to enhance the auditory spectrum.  

 
Fig. 1. Robust compressive gammachirp filterbank (RCGFB) and 
robust mel filterbank (RMFB) features extraction process. 
 
RCGFB utilizes a power function nonlinearity with a 
coefficient of 0.07 to approximate the loudness nonlinearity 
of human perception whereas RMFB uses a logarithmic 
nonlinearity. For feature normalization a short-term mean 
and scale normalization (STMSN) technique is used with a 
sliding window of 1.5 seconds.  
Under mismatched conditions, this helps to remove the 
difference of log spectrum between the training and test 
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environments by adjusting the short-term mean and scale 
[10]. 
 
2.3. Iterative Deconvolution (ITD)-based features   
The iterative deconvolution (ITD)-based dereverberated 
Mel filterbank features extraction method is presented in 
figure 2. It was proposed in [19]. A Gammatone filterbank 
integrated auditory spectrum is computed for each 
windowed frame.  ITD is then applied to each subband in 
the gammatone frequency domain. ITD, an iterative least 
square approach that minimizes the errors [19]: 
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initialized by nonnegative matrix factorization (NMF), is 
used to estimate the clean signal ( , )X m k and room impulse 

response  ,H m k  from the reverberated signal 

 ,S m k where k is the subband index and m is the frame 
index. After reconstructing the dereverberated signal 23-
dimensional mel filterbank features are then computed 
using the Kaldi toolkit. 

 
 
Fig. 2. Iterative Deconvolution (ITD)-based dereverberated MFB 
(ITD-MFB) features extraction. 
 
2.4. Maximum likelihood inverse filtering-based 
dereverberated (MLIFD) features 
 
Maximum likelihood inverse filtering-based 
dereverberation of a reverberated signal in the cepstral 
domain, proposed in [18], is shown in fig. 3. The purpose 
of cepstral post-filtering is to partially decorrelate the 
features. If P   1( ) 1 1P z pz  is an IIR (inverse 

impulse response) dereverberation filter of M taps long then 
the dereverberated cepstral features  dc m can be given as: 
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where m is the frame index,  c m  is the cepstral features of 
m-th frame of a reverberated speech signal.  

Parameters that  best describe P can be obtained by finding 
the most likely Gaussian Mixture Models (GMM) state for 
all the frames [18]. 

 
Fig. 3. Maximum likelihood inverse filtering-based 
dereverberated (MLIFD) MFCCs features extraction. 

3. EXTRACTION OF I-VECTORS 
The idea of i-vector extraction is based on a simplified 
version of Joint Factor Analysis (JFA) [3, 6].  Contrary to 
JFA, different sessions of the same speaker are considered 
to be produced by different speakers. Rather than making a 
distinction between the speaker and channel effects the total 
variability space in the i-vector extraction method 
simultaneously captures the speaker and channel 
variabilities [3, 6]. Given a C component GMM-UBM 
model   with  , , ,c c c cw    1, 2,...,c C and an 
utterance having a sequence of T feature frames 
 1 2, ,..., Ty y y  the zeroth and centered first order Baum-
Welch statistics on the UBM are computed as: 
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The generative model for the i-vector can be expressed as: 
                                    cM   T ,                             (6) 
where M is a supervector constructed by appending together 
the first order statistics for each mixture component c, the 
columns of the low rank total variability matrix T span the 
subspace where most of the speaker specific information 
lives (along with channel effects). For each speech 
recording r, an i-vector ri is obtained as the MAP estimate 
of  . Fig. 4 presents a block diagram showing various 
steps of the i-vector extraction process from the MFCC 
features. The Features used for i-vector extraction are the 
60-dimensional Multitaper MFCCs (MMFCCs) including 
the 0th cepstral coefficients, delta and double delta features. 
512-component diagonal UBM was trained on all the 
training data. For training the i-vector extractor (i.e., the 
total variability matrix T) we have used all the multi-
condition training data generated using the scripts provided  
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by the REVERB Challenge 2014 organizer. For this task 
we have generated both speaker-specific and utterance-
specific i-vectors  

 
Fig. 4. An i-vector extractor. 

4. TRAINING AND DECODING ALGORITHMS 
To get best possible results we ran multiple recognition 
experiments with different features. We then combined the 
decoded transcripts using ROVER, a recognition system 
combination software available from NIST. All the training 
and decoding was done using the Kaldi toolkit. Every 
recognizer used DNN-HMM hybrid architecture. For all the 
DNN's that use TRAP (TempoRAl Pattern) features [1] 
computed from filterbank features, we also input a 100-
dimensional i-vector [2] derived from all the utterances of 
the speaker. This i-vector characterizing a speaker [3, 22] 
helps the DNN to adapt to the speaker characteristics. 
For decoding, we used a pruned trigram LM with 709K 
trigrams generated from Wall Street Journal language 
model (LM) training data. The resulting lattices were 
rescored using a larger trigram LM (with 3.15 million 
trigrams) generated from the Wall Street LM training data. 
We used a vocabulary size of 20K words. 
 
4.1. Training data 
For training the DNN models, we use the multi-condition 
training data generated from the clean training data using 
the scripts provided by the organizer [13, 14]. The Total 
number of recordings in training data is 70155; 594 
utterances are held out in order to provide a cross validation 
set for DNN training. The same training and validation sets 
are used for training the DNN for different feature 
parameters derived from the raw signal. This training data 
corresponds to training with 20K vocabulary recognition 
task [13-14]. 
 
4.2. Training with MFCC features 

The maximum likelihood inverse filtering-based 
dereverberated MFCC features (i.e., MLIFD features) are 
used to train a DNN-HMM hybrid system. In order to train 
the DNN-HMM hybrid system, we first train a GMM-
HMM system with 3435 tied triphone states and 40K 
Gaussians. The training process uses the Kaldi toolkit [4] 
and the training process is similar to that outlined in [5]. In 
short, the GMM-HMM is trained on features obtained by 
first normalizing MFCCs to zero mean per speaker, then 
splicing together 7 frames of 13-dimensional MFCCs and 
reducing them to 40 dimensions through LDA, followed by 
a semi-tied covariance (STC) transform.  The resulting 
features are then transformed through an FMLLR 
transform. The LDA+STC+FMLLR transformed MFCC 
features are then used to train the GMM-HMM with 3435 
tied triphone states and 40K Gaussians. The deep neural 
net (DNN) is also trained on the LDA+STC+FMLLR 
transformed MFCC features. These features are globally 
normalized to have zero mean and unit variance. The input 
to the neural net is 11 frames (or 440 feature values). The 
DNN is initialized with stacked RBMs. The resulting DNN 
(with 5 hidden layers, 1024 neurons in each hidden layer, 
3435 outputs in the output layer) goes through one iteration 
of sequence training with MPE criteria.  The training data 
is re-aligned with the new DNN and we go through two 
more iterations of sequence training with the MPE criteria. 
The resulting DNN-HMM hybrid system is then used for 
recognition. 
 
4.3. Training with filterbank features 
For training DNN-HMM models from the baseline (i.e., 
conventional mel filterbank (MFB)) features, from the 
MMFBl (multi-taper Mel-filterbank with logarithmic 
nonlinearity) and MMFBp (multi-taper Mel-filterbank with 
power-law nonlinearity), from the RCGFB (robust 
compressive gammachirp filterbank) and RMFB  (robust 
Mel-filterbank) features,  and from the ITD-based 
dereverberated MFB (ITD-MFB) features, we generate 23-
dimensional filterbank features per frame for each of the 
above mentioned front-ends. The process for generating the 
DNN from these filterbank features is similar to that 
outlined in [2] for DNN-HMM system with speaker 
adaptation. From the filterbank features, we compute the 
TRAP features [1] as follows: we first normalize the 23-
dimensional filterbank features to zero mean per speaker. 
Then 31 frames of these 23-dimensional filterbank features 
(15 frames on each side of current frame) are spliced 
together to form a 713-dimensional feature vector. This 
713-dimensional feature vector is transformed using a 
hamming window (to emphasize the center), passed 
through a discrete cosine transform and the dimensionality 
is reduced to 368. This 368-dimensional feature vector is 
globally normalized to have zero mean and unit variance.  
This normalized 368-dimensional feature vector together 

4



with a 100 dimensional i-vector [6] (computed from the full 
utterance) is then input to the 7-layer DNN as shown in 
Fig. 5. The i-vector was length normalized by dividing the 
i-vector by the square root of the sum of the squares of its 
elements. Note that the un-normalized i-vectors are 
approximately Gaussianized by length normalization [7]. 
The DNN has 5 hidden layers with 1024 neurons each and 
the output softmax layer has around 3500 outputs. The i-
vector characterizing a speaker is used as an additional 
input to the feature layer in order to adapt the DNN to the 
speaker. The resulting DNN was then used to re-align the 
training data. This was then followed with four iterations of 
sequence training with the MMI criteria. 
We generated DNNs with two different variants. In the first 
variant, the i-vectors were computed from only the current 
utterance. In the second variant, all the utterances in one 
room per test condition corresponding to the same speaker 
were used to compute the 100-dimensional length 
normalized i-vector for this speaker. 

 
Fig. 5. Architecture of 7-layer DNN used with TRAP and i-vector 
features. 

4.3. Decoding Algorithm 
The decoding algorithm is slightly different depending on 
whether we are doing utterance-based batch processing or 
full batch  processing. For the MLIFD (maximum 
likelihood inverse filtering-based dereverberation) features 
that use FMLLR transform, we only use full batch 
processing, since we need to compute the FMLLR 
transform for the speaker from all the utterances of the 
speaker in the room. Computing FMLLR transform from a 
single short utterance gives poor results (we need over 20 
secs of audio to estimate reasonable FMLLR transforms). 
For full batch processing, we first diarize all the utterances 
in a room per test condition using a modified version of the 
multi-stage segmentation and clustering system [8]. The 

modification is that each utterance corresponds to one 
speaker. There is no sub-segmentation of the utterance. 
Fiterbank features in each speaker cluster are then 
normalized to zero. We also compute one 100-dimensional 
length normalized i-vector per speaker [6]. 
For utterance based batch processing, each utterance was 
labeled as a different speaker, and an i-vector was 
computed per utterance. In this case, the filterbank features 
are normalized per utterance and the 100 dimensional 
length normalized i-vector is computed per utterance. 
 

5. EXPERIMENTS AND RESULTS 
Front-ends or feature extractors used for this task have 
already been presented in section 2. Kaldi recognizer was 
used for training and recognition task. Experiments were 
carried out on the REVERB challenge 2014 corpora [13-
16] and results were reported on the all evaluation 
conditions for the 1-channel, 2-channel, and 8-channel 
tasks. Results reported here are only on the Evaluation 
corpus. Development corpus was used for tuning the system 
parameters.    
 
5.1. Results with utterance-based batch processing 
For utterance based batch processing, we decoded each 
utterance using six different feature sets (baseline, MMFBl,  
MMFBp, RMFB, RCGFB, and ITD-MFB then combined 
the six different results using ROVER (Recognizer Output 
Voting Error Reduction). We did not use MLIFD features 
as they provided poor results. In ROVER, we ignored the 
timing information and just used the voting mechanism. So 
for single channel results, we combine 6 different results 
using ROVER. Table 1 (a) shows the results for each 
feature and each room. The last row shows the results after 
combining results from all 6 features using ROVER. After 
ROVER, the average SimData WER is 10.0% and average 
RealData WER is 27.1%. 
For the 2-channel utterance-based recognition, the only 
difference from 1-channel processing is that for each room 
we combine the results for the two channels using ROVER. 
Here, the individual feature parameter WER is not going to 
be much different from that for 1-channel case, since 
ROVER needs at least 3 inputs to reduce the WER 
significantly. However, when we combine all the feature 
parameter outputs with ROVER (last row), the combination 
is for 12 different recognizers (2 channels x 6 features). 
The order of combination in ROVER is the order of the 
rows in Table 1 (b). As we can see from this table, The 
average WER for SimData has reduced to 9.6%, and for 
RealData the WER has reduced to 25.6%. 
In the 8-channel utterance based recognition, for each 
feature parameter, we combine the results from all 8 
channels using ROVER. The ordering of this combination 
is from channel 1 to channel 8. We did not try varying this 
order. Each row shows this combined result. Combining 8-
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channels with ROVER reduces the WER significantly. For 
combining recognition results from all the features (last 
row), there are 48 recognition outputs (8 channels x 6 
features) to combine. The recognition outputs are combined 
in the same order as the rows in Table 1 (c). That is, 
channels 1 through 8 of RCGFB are combined first, 
followed by channels 1-8 of MMFBl and so on.  ROVER is 
somewhat sensitive to the order of combination. So we 
combine the best systems first. As we can see from the 
table, The average WER for SimData has reduced to 9.1%, 
and for RealData the WER has reduced to 24.0%. 
 
5.2. Results with full batch processing 
There are a few differences between utterance-based batch   
processing and full batch processing. In utterance-based 
batch processing, we normalize the features of each 
utterance to zero mean, and compute a 100-dimensional i-
vector from this utterance. In full batch processing, we 
normalize the features of each speaker in a room to zero 
mean, and compute a 100-dimensional i-vector from this 
speaker in the room. In order to assign utterances in a room 
to speakers, we carry out speaker diarization using a 
modified version of the multi-stage segmentation and 
clustering system [8] as described before. 
In utterance based batch processing, we computed i-vectors 
separately for each utterance from three different features, 
and the corresponding i-vector was used when recognizing 
using that feature. In full batch processing, we computed i-
vector for each speaker using the multitaper MFCCs 
features, and used these i-vectors during 
training/recognition using other features. This strategy did 
not work well. Only the WER for MMFBl features went 
down while the results for other features were worse than 
utterance-based processing. Therefore, we used the results 
from utterance based batch processing for the other features 
(note MLIFD does not use i-vectors). 
Another difference between utterance-based versus full 
batch processing is that we are able to decode with MLIFD 
features in full batch processing. The MLIFD features for 
an utterance are transformed using LDA+STC+FMLLR 
before input to the neural net. FMLLR transform per 
utterance resulted in significant increase in WER and 
therefore MLIFD feature was not used in utterance-based 
batch processing. In full batch processing, the FMLLR is 
computed from all the utterances of a speaker in the room. 
In this scenario, MLIFD features gave very good results. 
The single channel results are shown in Table 2 (a). In the 
last column of Table 2 (a), we are combining results from 
seven different features using ROVER in the same order as 
the rows in this table. Overall, full batch processing 
reduced WER from 10.0% to 9.3% as compared to 
utterance based batch processing. 
In the 2-channel full batch processing, the only difference 
from 1-channel processing is that for each room we 

combine the results for the two channels using ROVER. 
Here, the individual feature parameter WER is not going to 
be much different from that for 1-channel case, since 
ROVER needs at least 3 inputs to reduce the WER 
significantly. However, when we combine all the feature 
parameter outputs with ROVER, the combination is for 14 
different recognizers (2 channels x 7 features). The results 
are shown in the last row of Table 2 (b). As we can see 
from the table, The average WER for SimData has reduced 
from 9.6% to 9.0%, and for RealData WER reduced from 
25.6% to 23.4% when compared with 2-channel utterance 
based processing. 
For the 8-channel full batch processing, for each feature 
parameter, we combine the results from all 8 channels 
using ROVER. The ordering of this combination is from 
channel 1 to channel 8. We did not try varying this order. 
Each row in Table 2 (c) presents this combined result. 
Combining 8-channels with ROVER reduces the WER 
significantly. For combining with ROVER recognition 
results from all the features (last row in Table 2 (c)), there 
are 56 recognition outputs (8 channels x 7 features) to 
combine. However, for some reason, we can only combine a 
maximum of 50 recognition outputs in ROVER. The 
recognition outputs are combined in the same sequence as 
the rows in Table  2 (c). That is, channels 1 through 8 of 
MLIFD are combined first, followed by channels 1-8 of 
RCGFB and so on. So only the first two channels of the 
Baseline features are combined with ROVER. As we can 
see, compared to 2 channel full batch processing, the WER 
for SimData has reduced from 9.0% to 8.9%, and for 
RealData WER has reduced from 23.4% to 21.7%. 

6. CONCLUSION 
In this work, to get the best possible recognition results 
(i.e., lowest WER), we decided to use multiple front-ends - 
based recognition systems and then combined the 
recognition results using ROVER. Front-ends chosen for 
the REVERB challenge task were: convention MFB, 
MMFB (with log and power-law nonlinearity), RCGFB, 
RMFB, ITD-MFB, and MLIFD features. We also applied i-
vector -based speaker adaptation as it was found to boost 
the performance by approximately 2% [2]. In the case of  2- 
and 8- channel tasks, to get benefited from more than one 
channel data, we also exploited ROVER instead of any 
multi-microphone signal processing method. Compared to 
the baseline all other front-ends performed better in terms 
of WER both in SimData (except MMFB with power 
function nonlinearity) and RealData. The best results were 
obtained with the full batch processing and with 8-channel 
task. For 8-channel task we obtained an average WER of 
8.9% and 21.7% on the SimData and RealData, 
respectively. 
Our future work is to try some multi-channel 
dereverberation algorithms and see their the recognition 
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performances both in clean- and multi-condition training 
mode. 
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Table 1 WER obtained using utterance-based batch processing for (a) 1channel (b) 2 channel, and (c) 8 channel tasks. 

(a) SimData RealData 
 Room 1 Room 2 Room 3 Avg. Room 1 Avg. 
 Near Far Near Far Near Far  Near Far  

RCGFB 8.2 9.4 9.8 15 10.8 16.6 11.6 30.4 31.5 30.9 
MMFBl 8.3 9.3 9.9 15.7 10.6 17.6 11.9 31.6 30.9 31.2 
MMFBp 8.5 9.8 11.1 17.2 11.8 19.2 12.9 30.2 31.9 31 
RMFB 8.4 9.1 9.7 15 10.8 17 11.6 31.8 31.3 31.5 

ITD-MFB 7.6 8.8 10.4 14.5 9.8 16 11.1 31.9 33 32.4 
Baseline 7.6 8.9 11.5 18.1 11.2 18.8 12.6 41 38 39.4 

ROVER-all 7.1 8.1 8.9 12.9 9.2 13.8 10 27.2 26.9 27.1 
           

(b) SimData RealData 
 Room 1 Room 2 Room 3 Avg. Room 1 Avg. 
 Near Far Near Far Near Far  Near Far  

RCGFB 8.4 9.5 10.1 15.2 11.1 17.1 11.9 31.4 32.4 31.9 
MMFBl 8.5 9.3 10.1 15.9 11.3 17.9 12.2 32.8 31.2 32 

7



MMFBp 8.9 10 11 18.1 12.5 20.3 13.5 31.8 32.9 32.3 
RMFB 8.4 9.1 10 15.4 10.8 17.3 11.9 32.6 31 31.8 

ITD-MFB 7.8 9 10.5 15.1 10.4 16.1 11.5 33 32.6 32.8 
Baseline 7.8 9.2 11.6 18.3 11.7 19.3 13 42.4 38.5 40.4 

ROVER-all 7 7.8 8.4 12.1 9 13.2 9.6 25.5 25.7 25.6 
 

(c) SimData RealData 
 Room 1 Room 2 Room 3 Avg. Room 1 Avg. 
 Near Far Near Far Near Far  Near Far  

RCGFB 8.1 9 9.1 14 10.3 15.3 11 27.9 28.7 28.3 
MMFBl 8.1 8.7 9.3 14.3 10.1 15.8 11.1 28.4 27 27.7 
MMFBp 8.4 9.2 10.2 16.1 11.4 18 12.2 27.5 28.7 28.1 
RMFB 8.1 8.7 9.1 13.6 10 14.8 10.7 29.4 27.7 28.5 

ITD-MFB 7.2 8.1 9.7 13.1 9.5 14.8 10.4 29.8 30.1 30 
Baseline 7.6 8.4 10.6 17 10.6 17.9 12 37.8 36.8 37.3 

ROVER-all 6.7 7.3 8.3 11.6 8.6 12.6 9.1 23.8 24.1 24 
 

Table 2 WER obtained using full batch processing for (a) 1channel (b) 2 channel, and (c) 8 channel tasks. 

(a) SimData RealData 
 Room 1 Room 2 Room 3 Avg. Room 1 Avg. 
 Near Far Near Far Near Far  Near Far  

MLIFD 8 8.8 10.9 15.9 11.1 17.6 12 27 28 27.5 
RCGFB 8.2 9.4 9.8 15 10.8 16.6 11.6 30.4 31.5 30.9 
MMFBl 8.7 9.9 10.3 17.2 11.3 18.7 12.6 28.7 28.7 28.6 
MMFBp 8.5 9.8 11.1 17.2 11.8 19.2 12.9 30.2 31.9 31 
RMFB 8.4 9.1 9.7 15 10.8 17 11.6 31.8 31.3 31.5 

ITD-MFB 7.6 8.8 10.4 14.5 9.8 16 11.1 31.9 33 32.4 
Baseline 7.6 8.9 11.5 18.1 11.2 18.8 12.6 41 38 39.5 

ROVER-all 6.7 7.3 8.4 11.8 8.7 12.7 9.3 23.8 24.8 24.3 
 

(b) SimData RealData 
 Room 1 Room 2 Room 3 Avg. Room 1 Avg. 
 Near Far Near Far Near Far  Near Far  

MLIFD 8.2 9 11.1 16.5 11.5 18.4 12.5 27.3 27.5 27.4 
RCGFB 8.4 9.5 10.1 15.2 11.1 17.1 11.9 31.4 32.4 31.9 
MMFCC 8.8 10.4 10.5 17.9 11.8 19.5 13.2 29.5 28.8 29.1 

MMFCC_I 8.9 10 11 18.1 12.5 20.3 13.5 31.8 32.9 32.3 
RMFB 8.4 9.1 10 15.4 10.8 17.3 11.9 32.6 31 31.8 

ITD-MFB 7.8 9 10.5 15.1 10.4 16.1 11.5 33 32.6 31 
Baseline 7.8 9.2 11.6 18.3 11.7 19.3 13 42.4 33 40.4 

ROVER-all 6.6 7.4 8.1 11.2 8.5 12.2 9 22.6 24.2 23.4 
  

(c) SimData RealData 
 Room 1 Room 2 Room 3 Avg. Room 1 Avg. 
 Near Far Near Far Near Far  Near Far  

MLIFD 7.5 8.3 10 14.1 10.4 15.9 11 23.8 24.4 24.1 
RCGFB 8.1 9 9.1 14 10.3 15.3 11 27.9 28.7 28.3 
MMFBl 8.5 9.5 9.5 16.1 10.8 17.4 12 26 26.2 26.1 
MMFBp 8.4 9.2 10.2 16.1 11.4 18 12.2 27.5 28.7 28.1 
RMFB 8.1 8.7 9.1 13.6 10 14.8 10.7 29.4 27.7 28.5 

ITD-MFB 7.2 8.1 9.7 13.1 9.5 14.8 10.4 29.8 30.1 30 
Baseline 7.6 8.4 10.6 17 10.6 17.9 12 37.8 36.8 37.3 

ROVER-all 6.7 7.3 8 11.1 8.1 12.1 8.9 21.4 22 21.7 
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