The MERL/MELCO/TUM system for the REVERB Challenge using Deep Recurrent Neural Network Feature Enhancement

Felix Weninger1,2, Shinji Watanabe1, Jonathan Le Roux1, John R. Hershey1, Yuuki Tachioka3, Jürgen Geiger2, Björn Schuller2, Gerhard Rigoll2

1 Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA
2 MMK, Technische Universität München, Munich, Germany
3 IT R&D Center, Mitsubishi Electric Corporation, Kamakura, Japan

Florence, Italy
May 10, 2014
Motivation

• Deep recurrent neural network (DRNN) feature enhancement: promising for reverberated ASR

• Potential performance improvement by additional:
 • Discriminative GMM training
 • DRNN acoustic modeling
 • Integration of multi- and single-channel enhancement

F. Weninger et al., Deep Recurrent De-Noising Auto-Encoder and Blind De-Reverberation for Reverberated Speech Recognition, ICASSP 2014

Y. Tachioka et al., Effectiveness of discriminative training for recognition of reverberated and noisy speech, ICASSP 2013

J. Geiger et al., Memory-Enhanced Recurrent Neural Networks and NMF for Robust ASR, T-ASLP 2014
System Overview

- Cascade multi- and single-channel enhancement
- DRNN always sees single-channel input
- Multi-stream HMM decoding
 - Cf. CHiME Challenge (Geiger et al., T-ASLP, 2014)
Multi-Channel Processing

• Cross-spectrum phase (CSP) + delay-and-sum (DS) beam-forming in the spectral domain

\[\tau_{1,m} = \arg \max S^{-1} \left[\frac{z_t(1) \odot z_t(m)^*}{|z_t(1)||z_t(m)|} \right] \]

\[\hat{z}_t = \sum_m z_t(m) \odot \exp(-j\omega \tau_{1,m}) \]

• Peak-hold process
• Noise component suppression
Single-channel DRNN-DAE enhancement

• Enhancement by de-noising auto-encoder (DAE)
 – Supervised training of mapping from reverberated and noisy to clean speech features (Log Mel)
 – Trained on simulated parallel data – does it generalize?

• Implement DAE as deep recurrent neural network (RNN) with Long Short-Term Memory (LSTM) architecture

• Successful in ASR feature enhancement task
 – Outperforms DNN on CHiME

• LSTM-RNN:
 – Adaptive context size
 – Models output dynamics

(Weninger et al., CSL, 2014)
LSTM de-reverberation

• Can learn long-term dependencies without blowing up input layer → More concise model
• Context size depends on history → useful for varying acoustic conditions

Noisy + reverberated features

Matrices obtained from supervised training

Compute input / forget gate activation based on feed-forward and recurrent part

Update cell state

Estimated clean speech features

Output cell state to hidden activation

\[
\begin{align*}
 h_t^{(0)} &:= x_t, \\
 f_t^{(n)} &:= \sigma(W_f^{(n)} [h_t^{(n-1)}; h_{t-1}^{(n)}; c_{t-1}^{(n)}; 1]) \\
 i_t^{(n)} &:= \sigma(W_i^{(n)} [h_t^{(n-1)}; h_{t-1}^{(n)}; c_{t-1}^{(n)}; 1]) \\
 c_t^{(n)} &:= f_t^{(n)} \otimes c_{t-1}^{(n)} \\
 &\quad + i_t^{(n)} \otimes \tanh(W_c^{(n)} [h_t^{(n-1)}; h_{t-1}^{(n)}; 1]), \\
 o_t^{(n)} &:= \sigma(W_o^{(n)} [h_t^{(n-1)}; h_{t-1}^{(n)}; c_t^{(n)}; 1]) \\
 h_t^{(n)} &:= o_t^{(n)} \otimes \tanh(c_t^{(n)}), \\
 \hat{y}_t &:= W^{(N+1)} [h_t^{(N)}; 1].
\end{align*}
\]
DAE training

- Training tasks:
 - 1-channel system: Map REVERB multi-condition training set to WSJCAM0 clean training set
 - 8-channel system: Map CSP+DS processed REVERB multi-condition training set to WSJCAM0 clean training set

- Dimension:
 - 1-channel: 3 bidirectional LSTM layers w/ 128 units
 - 8-channel: 2 bidirectional LSTM layers w/ 128 units

- Stochastic gradient descent with momentum and input noise

- Parallel GPU training in mini-batch learning
 - CURRENNT toolkit (http://currennt.sf.net)
Baseline recognizer

• ASR features:
 • 23 Mel filterbank outputs
 • 13 MFCCs (0-12)
 • Mean normalized Log Mel features → gain-independent

• Re-implemented REVERB HTK baseline in Kaldi toolkit

• Improvements:
 • LDA-SC (MLLT) instead of Δ+ ΔΔ
 • Feature-level context
 • Basis fMLLR adaptation *per utterance*
 • Similar or better performance than fMLLR with less adaptation data
Baseline improvements (2)

• Discriminative training of GMM-HMM
 • Boosted MMI criterion:
 \[
 f_b(\lambda) = \log \sum_u \frac{p(X^u | \lambda, h^*_{wu})^\alpha p_L(w^*_u)}{\sum_{w_u} p(X^u | \lambda, h^*_{wu})^\alpha p_L(w_u) e^{-b_o(w_u, w^*_u)}}
 \]

• Tri-gram language model

• Minimum Bayes Risk (MBR) decoding
 • Don’t choose hypothesis far from the N-best
 • Minimize expected WER instead of SER (in case of MAP)
DRNN acoustic modeling

\[b_t \]

\[\tilde{y}_t \approx f(y_t) \]

\[\tilde{x}_t = f(x_t) \]

Estimated phoneme posteriors

DAE pre-training
Multi-Stream DRNN+GMM-HMM

- Tandem decoding approach
- Discrete DRNN phoneme prediction:

\[b_t = \arg \max_i \tilde{y}_{t,i} \]

- Multi-stream emission probability:

\[p(x_t, b_t | s_t) = p(x_t | s_t)^\mu p(b_t | s_t)^{2-\mu} \]

- Stream weight \(\mu \) for GMM likelihood of acoustic feature vector \(x_t \)
- DRNN phoneme confusions modeled by \(p(b_t | s_t) \)
Baseline ASR results

<table>
<thead>
<tr>
<th></th>
<th>SimData</th>
<th>RealData</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVERB baselines (HTK)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean</td>
<td>51.86</td>
<td>88.38</td>
</tr>
<tr>
<td>Multi-condition</td>
<td>28.94</td>
<td>52.29</td>
</tr>
<tr>
<td>fMLLR</td>
<td>25.16</td>
<td>47.23</td>
</tr>
<tr>
<td>Our baselines (Kaldi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean</td>
<td>51.23</td>
<td>88.81</td>
</tr>
<tr>
<td>Multi-condition</td>
<td>28.62</td>
<td>54.04</td>
</tr>
<tr>
<td>Basis fMLLR</td>
<td>23.60</td>
<td>47.14</td>
</tr>
</tbody>
</table>
Baseline ASR results (2)

<table>
<thead>
<tr>
<th></th>
<th>SIMData</th>
<th>REALData</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our baselines (Kaldi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean</td>
<td>51.23</td>
<td>88.81</td>
</tr>
<tr>
<td>Multi-condition</td>
<td>28.62</td>
<td>54.04</td>
</tr>
<tr>
<td>Basis fMLLR</td>
<td>23.60</td>
<td>47.14</td>
</tr>
<tr>
<td>+LDA-STC</td>
<td>19.42</td>
<td>41.42</td>
</tr>
<tr>
<td>+DT</td>
<td>15.53</td>
<td>40.60</td>
</tr>
<tr>
<td>+Tri-gram</td>
<td>12.28</td>
<td>31.05</td>
</tr>
<tr>
<td>+MBR</td>
<td>12.05</td>
<td>30.73</td>
</tr>
</tbody>
</table>

Kaldi recipe available on REVERB homepage
DRNN enhancement training epochs

Clean recognizer, LDA-STC, ML trained, Trigram
Base: $43.4 \% / 89.6 \%$

Input: 1st channel

- Drastic improvement over noisy baseline
- More effective than MCT without front-end processing ($23 \% / 48 \%$)
- Fast convergence esp. on REALDATA

5/10/14
Felix Weninger - MERL/MELCO/TUM system
DRNN enhancement training epochs

Clean recognizer, LDA-STC, ML trained, Trigram
Base: **24.9 / 72.2**

Input: CSP+DS (Channels 1-8)

- Even faster convergence ...
- Mismatch by beam-forming alleviated
Enhancement results: Clean training w/ fMLLR adaptation

<table>
<thead>
<tr>
<th># channels</th>
<th>DRNN enh.?</th>
<th>SIMData</th>
<th>REALData</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✗</td>
<td>33.2</td>
<td>77.8</td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
<td>14.0</td>
<td>35.0</td>
</tr>
<tr>
<td>8</td>
<td>✗</td>
<td>16.4</td>
<td>54.5</td>
</tr>
<tr>
<td>8</td>
<td>✓</td>
<td>9.7</td>
<td>26.5</td>
</tr>
<tr>
<td>Oracle</td>
<td></td>
<td>6.0</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Best result without using the multi-condition set!
Enhancement results: bMMI MCT recognizer

- Tuning of search parameters
- Discriminative training (boosted MMI) with (processed) multi-condition set

<table>
<thead>
<tr>
<th># channels</th>
<th>DRNN enh.?</th>
<th>SIMDATA</th>
<th>REALDATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✗</td>
<td>11.2</td>
<td>30.8</td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
<td>10.4</td>
<td>26.3</td>
</tr>
<tr>
<td>8</td>
<td>✗</td>
<td>7.5</td>
<td>23.9</td>
</tr>
<tr>
<td>8</td>
<td>✓</td>
<td>7.7</td>
<td>21.4</td>
</tr>
<tr>
<td>Oracle</td>
<td></td>
<td>5.1</td>
<td>9.9</td>
</tr>
</tbody>
</table>

Best result with single-channel front-end
Test set evaluation: Enhancement, GMM-HMM AM

<table>
<thead>
<tr>
<th>WER [%]</th>
<th>SIMData</th>
<th>REALData</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-channel systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REVERB baseline</td>
<td>25.3</td>
<td>49.2</td>
</tr>
<tr>
<td>GMM-HMM</td>
<td>11.7</td>
<td>30.9</td>
</tr>
<tr>
<td>+ DRNN enh.</td>
<td>10.2</td>
<td>26.7</td>
</tr>
<tr>
<td>8-channel system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ CSP-DS</td>
<td>7.8</td>
<td>20.1</td>
</tr>
</tbody>
</table>
Test set evaluation:
DRNN+GMM-HMM AM

<table>
<thead>
<tr>
<th>Model</th>
<th>SIMData</th>
<th>REALData</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRNN+GMM-HMM</td>
<td>7.28</td>
<td>21.69</td>
</tr>
<tr>
<td>GMM-HMM w/ DRNN enh.</td>
<td>7.75</td>
<td>20.09</td>
</tr>
<tr>
<td>ROVER</td>
<td>7.02</td>
<td>19.61</td>
</tr>
<tr>
<td>GMM-HMM w/ Oracle enh.</td>
<td>5.65</td>
<td>8.47</td>
</tr>
</tbody>
</table>
Results with GMM-HMM and DRNN enhancement by room

![WER on et (%)](chart)

- R1
- R2
- R3
- Real

- Near
- Far
- Oracle
Conclusions and Outlook

• Supervised training of de-reverberation with RNN is effective for ASR
 • Works on real data
 • Particularly promising for single-channel scenario
 • Can be efficiently combined with beam-forming
 • Some over-fitting observed (less than RNN-AM)

• Future work:
 • Effectiveness of supervised training for multi-channel de-reverberation
 • Use phase information
Thank you.

felix@weninger.de